THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

ITD2ANGLE_LOOKUPTABLE - generates an ITD-azimuth lookup table for the given HRTF set

Program code:

function lookup = itd2angle_lookuptable(hrtf,varargin)
%ITD2ANGLE_LOOKUPTABLE generates an ITD-azimuth lookup table for the given HRTF set
%   Usage: lookup = itd2angle_lookuptable(hrtf,fs,model);
%          lookup = itd2angle_lookuptable(hrtf,fs);
%          lookup = itd2angle_lookuptable(hrtf);
%
%   Input parameters:
%       hrtf   : HRTF data set (as SOFA file or struct)
%       fs     : sampling rate, (default: 44100) / Hz
%       model  : binaural model to use:
%                   'dietz2011' uses the Dietz binaural model (default)
%                   'lindemann1986' uses the Lindemann binaural model
%
%   Output parameters:
%       lookup : struct containing the polinomial fitting data for the
%                ITD -> azimuth transformation, p,MU,S, see help polyfit
%
%   ITD2ANGLE_LOOKUPTABLE(hrtf) creates a lookup table from the given HRTF data
%   set. This lookup table can be used by the dietz2011 or lindemann1986 binaural
%   models to predict the perceived direction of arrival of an auditory event.
%   The azimuth angle is stored in degree in the lookup table.
%
%   For the handling of the HRTF SOFA file format see
%   http://www.sofaconventions.org/
%
%   See also: dietz2011, lindemann1986, wierstorf2013
%
%   References:
%     M. Dietz, S. D. Ewert, and V. Hohmann. Auditory model based direction
%     estimation of concurrent speakers from binaural signals. Speech
%     Communication, 53(5):592--605, 2011. [1]http ]
%     
%     H. Wierstorf, M. Geier, A. Raake, and S. Spors. A free database of
%     head-related impulse response measurements in the horizontal plane with
%     multiple distances. In Proceedings of the 130th Convention of the Audio
%     Engineering Society, 2011.
%     
%     H. Wierstorf, A. Raake, and S. Spors. Binaural assessment of
%     multi-channel reproduction. In J. Blauert, editor, The technology of
%     binaural listening, chapter 10. Springer, Berlin--Heidelberg--New York
%     NY, 2013.
%     
%     References
%     
%     1. http://www.sciencedirect.com/science/article/pii/S016763931000097X
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/general/itd2angle_lookuptable.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 0.10.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Hagen Wierstorf
% last modified: Robert Baumgartner (SOFA compatibility)


%% ===== Checking of input parameters ===================================
narginchk(1,3);

definput.flags.model = {'dietz2011','lindemann1986'};
definput.keyvals.fs = 44100;
[flags,kv]=ltfatarghelper({'fs'},definput,varargin);

% HRTF format
if isfield(irs,'GLOBAL_Conventions')
  flags.do_SOFA = true;
  flags.do_TUB = not(flags.do_SOFA);
  Obj = irs;
else
  flags.do_TUB = true;
  flags.do_SOFA = not(flags.do_TUB);
end

%% ===== Configuration ==================================================
% Samplingrate
fs = kv.fs;
% Time of noise used for the calculation (samples)
nsamples = fs;
% Noise type to use
noise_type = 'white';
% SFS Toolbox settings
conf.ir.useinterpolation = true;
conf.ir.useoriglength = true;
conf.fs = fs;
conf.c = 343;
conf.usefracdelay = false;


%% ===== Calculation ====================================================
% Generate noise signal
sig_noise = noise(nsamples,1,noise_type);

% get only the -90 to 90 degree part of the irs set
ele = 0;
idFrontHor = Obj.SourcePosition(:,2) == ele & ... % horizontal plane
    (Obj.SourcePosition(:,1) >= -90 | Obj.SourcePosition(:,1) >= 270) & ... % front right
    Obj.SourcePosition(:,1) <= 90; % front left
azi = Obj.SourcePosition(idFrontHor,1);
% iterate over azimuth angles
nangles = length(azi);
% create an empty mod_itd, because the lindemann model didn't use it
mod_itd = [];

if flags.do_dietz2011

    itd = zeros(nangles,12);
    mod_itd = zeros(nangles,23);
    ild = zeros(nangles,23);
    for ii = 1:nangles
        % generate noise coming from the given direction
        sig = SOFAspat(sig_noise,hrtf,azi(ii),ele);
        % calculate binaural parameters
        [fine, cfreqs, ild_tmp, env] = dietz2011(sig,fs);
        % unwrap ITD
        itd_tmp = dietz2011_unwrapitd(fine.itd,ild_tmp(:,1:12),fine.f_inst,2.5);
        env_itd_tmp = dietz2011_unwrapitd(env.itd,ild_tmp(:,13:23),env.f_inst,2.5);
        % calculate the mean about time of the binaural parameters and store
        % them
        itd(ii,1:12) = median(itd_tmp,1);
        itd(ii,13:23) = median(env_itd_tmp,1);
        ild(ii,:) = median(ild_tmp,1);
    end

elseif flags.do_lindemann1986

    itd = zeros(nangles,36);
    ild = zeros(nangles,36);
    for ii = 1:nangles
        % generate noise coming from the given direction
        sig = SOFAspat(sig_noise,irs,azi(ii),ele);
        % Ten fold upsampling to have a smoother output
        %sig = resample(sig,10*fs,fs);
        % Calculate binaural parameters
        c_s = 0.3; % stationary inhibition
        w_f = 0; % monaural sensitivity
        M_f = 6; % decrease of monaural sensitivity
        T_int = inf; % integration time
        N_1 = 17640; % sample at which first cross-correlation is calculated
        [cc_tmp,dummy,ild(ii,:),cfreqs] = lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1);
        clear dummy;
        cc_tmp = squeeze(cc_tmp);
        % Calculate tau (delay line time) axes
        tau = linspace(-1,1,size(cc_tmp,1));
        % find max in cc
        for jj = 1:size(cc_tmp,2)
            [v,idx] = max(cc_tmp(:,jj));
            itd(ii,jj) = tau(idx)/1000;
        end
    end

end

% Fit the lookup data
for n = 1:size(itd,2)
    [p(:,n),S{n},MU(:,n)] = polyfit(itd(:,n),azi,12);
    [p_ild(:,n),S_ild{n},MU_ild(:,n)] = polyfit(ild(:,n),azi,12);
end
% Create lookup struct
lookup.p = p;
lookup.MU = MU;
lookup.S = S;
lookup.p_ild = p_ild;
lookup.MU_ild = MU_ild;
lookup.S_ild = S_ild;