This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function y=ziegelwanger2014offaxis(p,x)
%ZIEGELWANGER2014OFFAXIS Off-axis time-of-arrival model
% Usage: y=ziegelwanger2014offaxis(p,x)
%
% Input:
% p: off-axis time-of-arrival model parameters [SI-units]
% x: HRTF direction (azimuth,elevation) [rad]
% Output:
% y: time-of-arrival [s]
%
% `toa=ziegelwanger2014offaxis(p,x)` calculates time-of-arrivals for given
% model parameters (p) and directions (x) with an off-axis time-of-arrival
% model.
%
% See also: ziegelwanger2014, ziegelwanger2014onaxis,
% data_ziegelwanger2014, exp_ziegelwanger2014
%
% References: ziegelwanger2014
% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria
if isoctave
tmp=p;
p=x;
x=tmp;
clear tmp
end
r=p(1); %............. sphere radius [m]
xM=p(2); %............ x-coordinate of the sphere center [m]
yM=p(3); %............ y-coordinate of the sphere center [m]
zM=p(4); %............ z-coordinate of the sphere center [m]
delay=p(5); %......... constant dely [s]
phi_ear=p(6); %....... position of the ear (azimuth angle) [rad]
theta_ear=p(7); %..... position of the ear (elevation angle) [rad]
M=sqrt(xM^2+yM^2+zM^2);
beta=acos(-cos(x(:,2)).*(xM*cos(x(:,1))+yM*sin(x(:,1)))-zM*sin(x(:,2)));
s2=-r+M*cos(beta)+sqrt(r^2+M^2*cos(beta).^2+2*M*r);
gamma=pi-beta-acos((2*M^2+2*M*r-2*r*s2-s2.^2)/(2*M^2+2*M*r));
if M==0
s1=zeros(size(x,1),1);
else
s1=M*cos(beta)./(2*(M+r).*tan(gamma/2));
end
y=1/340*((r* ...
((sign(sin(theta_ear).*sin(x(:,2))+cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))/2+0.5).* ...
(1-sin(theta_ear).*sin(x(:,2))-cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))+ ...
(-sign(sin(theta_ear).*sin(x(:,2))+cos(theta_ear).*cos(x(:,2)).*cos(phi_ear-x(:,1)))/2+0.5).* ...
(1+acos(sin(theta_ear).*sin(x(:,2))+cos(theta_ear)*cos(x(:,2)).*cos(phi_ear-x(:,1)))-pi/2))) ...
+s1+s2) ...
+delay-(M+r)/340;
end