function data = data_middlebrooks1999
%DATA_MIDDLEBROOKS1999 Statistics about non-individualized HRTFs
% Usage: data = data_middlebrooks1999
%
% Output parameters:
% data.qe_own : quadrant error rate (QE) when localizing with own
% HRTFs
% data.qe_other : QE when localizing with others' HRTFs
% data.pe_own : local polar RMS error (PE) when localizing with own
% HRTFs
% data.pe_other : PE when localizing with others' HRTFs
% data.pb_own : magnitude of polar bias (PB) when localizing with own
% HRTFs; upper-rear quadrant excluded from analysis
% data.pb_other : PB when localizing with others' HRTFs
%
% `data_middlebrooks1999` returns statistics summary from Fig. 13
% (Middlebrooks, 1999b) showing the effect of non-individualized HRTFs.
%
% Statistics of those parameters are stored as *.mean* and *.quantiles*
% representing the arithmetic mean and {0,5,25,50,75,95,100} quantiles,
% respectively.
%
% References: middlebrooks1999nonindividualized
% AUTHOR: Robert Baumgartner
% Quantiles: {0,5,25,50,75,95,100}%
% QE
data.qe_own.quantiles = [0,0,1,3,5,13,17];
data.qe_own.mean = 3;
data.qe_other.quantiles = [7.5,7.5,13,19,28,38,39];
data.qe_other.mean = 21;
% PE
data.pe_own.quantiles = [22,23,25,27,30,34,36];
data.pe_own.mean = 28;
data.pe_other.quantiles = [23,33,38,42,48,54,55];
data.pe_other.mean = 43;
% EB
data.pb_own.quantiles = [1,2.5,6,10,13,20,25.5];
data.pb_own.mean = 10;
data.pb_other.quantiles = [0.5,2,6.5,18,29,42,52];
data.pb_other.mean = 19;
end