function [waveVlat] = roenne2012tonebursts(stim_level,varargin)
%ROENNE2012TONEBURSTS Simulate tone burst evoked ABR wave V latencies
% Usage: [waveVamp, waveVlat] = roenne2012tonebursts(flag)
%
% Output parameters:
% waveVlat : Latency of simulated ABR wave V peak.
%
% `roenne2012tonebursts(stim_level)` simulates ABR responses to tone burst
% stimuli using the ABR model of Rønne et al. (2012) for a range of
% given stimulus levels.
%
% Fig. 5 of Rønne et al. (2012) can be reproduced. Simulations are
% compared to data from Neely et al. (1988) and Harte et al. (2009). Tone
% burst stimuli are defined similar to Harte et al. (2009). Tone burst
% center frequencies are: 1, 1.5, 2, 3, 6 and 8 kHz.
%
% The flag may be one of:
%
% 'plot' Plot main figure (fig 6 or 7).
%
% 'plot2' Plot extra figures for all individual simulations (3
% figures x stimulus levels x number of chirps).
%
% 'noplot' Do not plot main figure (fig 6 or 7). This is the default.
%
% 'fig5' Plot Fig. 5 (Rønne et al., 2012). Latency of simulated ABR
% wave V's compared to Neely et al. (1988) and Harte et al.
% (2009) reference data.
%
% 'stim_level',sl Simulated levels. Default: Stimulus levels as
% chosen by Rønne et al. (2012), 40 to 100 dB pe SPL
% in steps of 10 dB.
%
% Example:
% --------
%
% Figure 5 of Roenne et al. (2012) can be displayed using::
%
% roenne2012tonebursts(40:10:100,'plot');
%
% References: roenne2012modeling elberling2010evaluating harte2009comparison zilany2007representation
definput.flags.plot={'noplot','plot','plot2'};
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Init
fsmod = 200000; % AN model fs
% length of modelling [ms]
modellength = 40;
% load Unitary Response
[ur,fs]=data_roenne2012;
% Output filter corresponding to recording settings (see Elberling et al
% 2010 section 3)
b=fir1(200,[100/(fs/2),3000/(fs/2)]);
a=1;
% Center Frequencies of stimuli
CF = [1000, 1500, 2000, 3000 ,6000, 8000];
% Load tone burst stimuli, identical to Harte et al. (2009)
[Hartestim,fsstim] = data_harte2009;
%% ABR model
% Loop over stimulus levels
for L = 1:length(stim_level)
TB_lvl = stim_level(L);
% Loop over stimulus center frequencis
for F = 1:length(CF)
% Read tone burst of current CF
stimread=Hartestim.(['gp' num2str(CF(F))]);
stim = zeros(fsstim*modellength/1000,1);
% Create stimulus with tone burst and concatenated zeros =>
% combined length = "modellength"
stim(1:length(stimread)) = stimread;
% call AN model, note that lots of extra outputs are possible
[ANout,vFreq] = zilany2007humanized(TB_lvl, stim, fsstim,fsmod);
% subtract 50 due to spontaneous rate
ANout = ANout-50;
% Sum in time across fibers, summed activity pattern
ANsum = sum(ANout',2);
% Downsample ANsum to get fs = fs_UR = 32kHz
ANsum = resample(ANsum,fs,fsmod);
% Simulated potential = UR * ANsum (* = convolved)
simpot = filter(ur,1,ANsum);
% apply output filter similar to the recording conditions in
% Elberling et al. (2010)
simpot = filtfilt(b,a,simpot);
% Find max peak value (wave V)
maxpeak = max(simpot);
% Find corresponding time of max peak value (latency of wave V)
waveVlat(F,L) = find(simpot == maxpeak);
%% PLOTS, extra plots created for all conditions used, i.e. three
% plots for each stimulus level x center frequency. If this
% is switched on and all other variables are set to default,
% 7 (levels) x 6 (CFs) x 3 (different figures) = 126 figures will
% be created
if flags.do_plot2
% Plot ABR (simpot)
t = 1e3.*[0:length(simpot)-1]./fs;
figure, plot(t-3.5,simpot,'k','linewidth',2)
xlabel('time [ms]'), set(gca, 'fontsize',12)
title(['Simulated ABR ( ' num2str(CF(F)) 'Hz,' num2str(TB_lvl) 'dB)'])
% PLOT ANgram
figure, set(gca, 'fontsize',12),imagesc(ANout),
title(['ANgram, level = ' num2str(TB_lvl) 'dB, CF = ' num2str(CF(F))])
ylabel('model CF'),xlabel('time [ms]'), xlabel('time [ms]')
set(gca,'YTick',[1 100 200 300 400 500]),
set(gca,'YTicklabel',round(vFreq([1 100 200 300 400 500])))
set(gca,'XTick',(700:500:10000)),
set(gca,'XTicklabel',(0:500:9500)/fsmod*1000-3.5)
colorbar
% PLOT ANURgram
figure,
ANUR = resample(ANout',fs,fsmod);
ANUR = filter(ur,1,ANUR);
imagesc(ANUR'),ylabel('model CF'),
set(gca,'YTick',[1 100 200 300 400 500]),xlabel('time [ms]'),
set(gca,'YTicklabel',round(vFreq([1 100 200 300 400 500]))),
set(gca,'XTick',(105:150:1500)),
set(gca,'XTicklabel',(0:150:1350)/fs*1000-3.5)
colorbar, title(['AN-UR gram, level = ' num2str(TB_lvl) 'dB, CF = ' num2str(CF(F))])
end
end
end
offset = 3.5 ; % stimuli delayed 3.5ms from start
waveVlat = waveVlat*1000/fs-offset;
if flags.do_plot
ClickLatency = roenne2012click(stim_level);
figure;
plotroenne2012toneburst(waveVlat,click_latency);
end