function [benefit, weighted_SNR, weighted_bmld] = jelfs2011(target,interferer,varargin)
%JELFS2011 Predicted binaural advantage for speech in reverberant conditions
% Usage: [benefit weighted_SNR weighted_bmld] = jelfs2011(target,interferer,fs)
%
% Input parameters:
% target : Binaural target impulse respone (or stimulus)
% interfererer : Binaural interferer impulse response (or stimulus)
% Multiple interfering impulse responses MUST be
% concatenated, not added.
%
% Output parameters:
% benefit : spatial release from masking (SRM)in dB
% weighted_SNR : component of SRM due to better-ear listening (dB)
% weighted_bmld : component of SRM due to binaural unmasking (dB)
%
% `jelfs2011(target,interferer,fs)` computes the increase in speech
% intelligibility of the target when the target and interferer are
% spatially separated. They are preferably represented by their impulse
% responses, but can be represented by noise recordings of equivalent
% spectral shape emitted from the same source locations (using the same
% noise duration for target and interferer). The impulse responses are
% assumed to be sampled at a sampling frequency of *fs* Hz. If the
% modelled sources differ in spectral shape, this can be simulated by
% pre-filtering the impulse responses.
%
% `[benefit, weighted_SNR, weighted_bmld]=jelfs2011(...)` additionaly
% returns the benefit from the SII weighted SNR and the SII weighted BMLD.
%
% If *target* or *interferer* are cell-arrays, they contents of these cell
% arrays will be passed as arguments to the |read_hrtf|. The first
% argument in the cell-array is the azimuth angle, and the second
% parameter is the database type. The elevation is set to zer.
% function. This makes it possible to directly load HRIR from a
% database.
%
% Example:
% --------
%
% The following code will load HRIRs from the 'kemar' database and
% compute the binaural speech intelligibility advantage for a target
% at 0 degrees and interferers at 300 and 90 degrees:::
%
% jelfs2011({0,'kemar'},{[330 90],'kemar'})
%
% See also: plotjelfs2011, culling2005bmld, read_hrtf, exp_jelfs2011
%
% References: jelfs2011revision culling2010mapping lavandier2012binaural
definput.flags.ears={'both','left','right'};
definput.keyvals.fs=[];
definput.keyvals.pad=1024;
[flags,kv,fs]=ltfatarghelper({'fs'},definput,varargin);
% If target or interferer are cell arrays, call read_hrtf to load the data.
if iscell(target)
[target,fs] = read_hrtf(0,target{:});
target=postpad(target,size(target,1)+kv.pad);
end;
if iscell(interferer)
azims=numel(interferer{1});
[interferer,fs2] = read_hrtf(0,interferer{:});
interferer=postpad(interferer,size(interferer,1)+kv.pad);
if fs2~=fs
error('%s: Mis-match between target and interferer sampling rate.',upper(mfilename));
end;
% Old code compatibility
if ndims(interferer)==3
s=size(interferer);
interferer=reshape(interferer,s(1)*s(2),s(3));
interferer=interferer/sqrt(azims);
end;
end;
if isempty(fs)
error('%s: You must specify the sampling rate, fs.',upper(mfilename));
end;
% Make sure that there is at least 1 erb per channel, and get
% the gammatone filters.
nchannels=ceil(freqtoerb(fs/2));
fc=erbspace(0,fs/2,nchannels);
[b,a] = gammatone(fc,fs,'complex');
effective_SNR = zeros(nchannels,1);
bmld_prediction = zeros(nchannels,1);
targ_f = 2*real(ufilterbankz(b,a,target));
int_f = 2*real(ufilterbankz(b,a,interferer));
for n = 1:nchannels
% Calculate the effect of BMLD
if flags.do_both
% cross-correlate left and right signal in channel n for both the
% target and the inteferer
[phase_t, coher_t] = do_xcorr(targ_f(:,n,1),targ_f(:,n,2),fs,fc(n));
[phase_i, coher_i] = do_xcorr( int_f(:,n,1), int_f(:,n,2),fs,fc(n));
bmld_prediction(n) = culling2005bmld(coher_i,phase_t,phase_i,fc(n));
end
% Calculate the effect of better-ear SNR
left_SNR = sum(targ_f(:,n,1).^2) / sum(int_f(:,n,1).^2);
right_SNR = sum(targ_f(:,n,2).^2) / sum(int_f(:,n,2).^2);
if flags.do_both
SNR = max(left_SNR,right_SNR);
end;
if flags.do_left
SNR = left_SNR;
end;
if flags.do_right
SNR = right_SNR;
end
% combination
effective_SNR(n) = 10*log10(SNR);
end
% Calculate the SII weighting
weightings = siiweightings(fc);
if flags.do_both
weighted_bmld = sum(bmld_prediction.*weightings);
else
weighted_bmld = 0;
end
weighted_SNR = sum(effective_SNR.*weightings);
benefit = weighted_SNR + weighted_bmld;
end
% Helper function to do the cross-correlation, and extract the delay of
% the peak (output parameter 'phase' and the coherence at the peak).
function [phase, coherence] = do_xcorr(left, right, fs, fc)
% Use the LTFAT correlation function to avoid depending on xcorr, which
% is not in core of Matlab or Octave.
iacc = pxcorr(squeeze(left),squeeze(right),'normalize');
% Find the position of the largest correlation coefficient.
[coherence, delay_samp] = max(iacc);
if delay_samp > length(iacc)/2
delay_samp=delay_samp-length(iacc);
end
phase = fc*2*pi*delay_samp/fs;
end