function [Obj,results]=ziegelwanger2013(Obj,method,model,p0_onaxis)
%ZIEGELWANGER2013 Time of arrival estimates
% Usage: [Obj,results]=ziegelwanger2013(Obj,method,model,p0_onaxis)
%
% Input parameters:
% Obj: SOFA object
% method : (Optional) Select one of the estimation methods
% model : (Optional) Correct estimated toa, using geometrical
% TOA-Model. If model=0 use TOA estimated,
% if model=1 use TOA modeled (default).
% p0_onaxis: (optional) Starting values for lsqcurvefit
% dim 1: [sphere-radius in m,
% azimut of ear in radiants,
% elevation of ear in radiants,
% direction-independent delay in seconds]
% dim 2: each record channel
%
% Output parameters:
% Obj: SOFA Object
%
% results.toa: data matrix with time of arrival (TOA) for each impulse response (IR):
% dim 1: each toa in samples
% dim 2: each record channel
% results.p_onaxis: estimated on-axis model-parameters
% dim 1: [sphere-radius in m,
% azimut of ear in radiants,
% elevation of ear in radiants,
% direction-independent delay in seconds]
% dim 2: each record channel
% results.p_offaxis: estimated off-axis model-parameters
% dim 1: [sphere-radius in m,
% xM in m,
% yM in m,
% zM in m,
% direction-independent delay in seconds,
% channel (starting at 1),
% azimut of ear in radiants,
% elevation of ear in radiants]
% dim 2: each record channel
%
% Estimates the Time-of-Arrival for each measurement in Obj (SOFA) and
% corrects the results with a geometrical model of the head.
%
% The value of method is an integer choosing one of the following
% methods. XXX Explain for each method a little about how they work:
%
% 1) Threshold-Detection
%
% 2) Centroid of squared IR
%
% 3) Mean Groupdelay
%
% 4) Minimal-Phase Cross-Correlation (Max) (default)
%
% Requirements:
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Optimization Toolbox for Matlab
%
% 3) Data in hrtf/ziegelwanger2013
%
%
% Examples:
% ---------
%
% To calculate the model parameters for the on-axis time-of-arrival model
% (p_onaxis) and for the off-axis time-of-arrival model (p_offaxis) for a
% given HRTF set (SOFA object, 'Obj') with the minimum-phase
% cross-correlation method, use:
%
% [Obj,results]=ziegelwanger2013(Obj,4,1);
%
% See also: ziegelwanger2013onaxis, ziegelwanger2013offaxis,
% data_ziegelwanger2013, exp_ziegelwanger2013
%
% References:
% P. Majdak and H. Ziegelwanger. Continuous-direction model of the
% broadband time-of-arrival in the head-related transfer functions. In
% ICA 2013 Montreal, volume 19, page 050016, Montreal, Canada, 2013. ASA.
%
% H. Ziegelwanger and P. Majdak. Modeling the broadband time-of-arrival
% of the head-related transfer functions for binaural audio. In
% Proceedings of the 134th Convention of the Audio Engineering Society,
% page 7, Rome, 2013.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/binaural/ziegelwanger2013.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria
%% ----------------------------convert to SOFA-----------------------------
if ~isfield(Obj,'GLOBAL_Version')
Obj=SOFAconvertARI2SOFA(Obj.hM,Obj.meta,Obj.stimPar);
end
%% ----------------------------check variables-----------------------------
if ~exist('method','var')
method=4;
else if isempty(method)
method=4;
end
end
if ~exist('model','var')
model=1;
else if isempty(model)
model=1;
end
end
if ~exist('p0_onaxis','var')
p0_onaxis=[[0.0875; pi/2; 0; 0] [0.0875; -pi/2; 0; 0]];
end
%% -------------------------initialize variables---------------------------
p0_onaxis=transpose(p0_onaxis);
p_onaxis=zeros(size(p0_onaxis));
p0_offaxis=zeros(2,7);
p_offaxis=p0_offaxis;
toa=zeros(Obj.API.M,Obj.API.R);
toaEst=zeros(Obj.API.M,Obj.API.R);
indicator=zeros(Obj.API.M,Obj.API.R);
indicator_hor=indicator;
indicator_sag=indicator;
pos=zeros(Obj.API.M,8);
pos(:,1:2)=Obj.SourcePosition(:,1:2);
[pos(:,6),pos(:,7)]=sph2hor(Obj.SourcePosition(:,1),Obj.SourcePosition(:,2));
pos(:,8)=cumsum(ones(Obj.API.M,1));
% for ii=1:Obj.API.M
% for jj=1:Obj.API.R
% if isnan(Obj.Data.IR_min(1,ii,jj))
% hM_min(:,ii,jj)=ARI_MinimalPhase(Obj.hM(:,ii,jj));
% end
% end
% end
%% -----------------------estimate time-of-arrival-------------------------
switch method
case 1 %---------------------------Threshold---------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
toaEst(ii,jj)=find(abs(Obj.Data.IR(ii,jj,:))==max(abs(Obj.Data.IR(ii,jj,:))),1);
end
end
case 2 %---------------------------Centroid----------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
toaEst(ii,jj)=find(cumsum(Obj.Data.IR(ii,jj,:).^2)>(sum(Obj.Data.IR(ii,jj,:).^2)/2),1);
end
end
case 3 %---------------------------Groupdelay--------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
[Gd,F]=grpdelay(transpose(double(squeeze(Obj.Data.IR(ii,jj,:)))),1,Obj.API.N,Obj.Data.SamplingRate);
toaEst(ii,jj)=median(Gd(find(F>500):find(F>2000)));
end
end
case 4 %---------------------------Minimal-Phase-----------------------
Obj=ARI_MinimalPhase(Obj);
corrcoeff=zeros(Obj.API.M,Obj.API.R);
for ii=1:Obj.API.M
for jj=1:Obj.API.R
[c,lag]=xcorr(squeeze(Obj.Data.IR(ii,jj,:)),squeeze(Obj.Data.IR_min(ii,jj,:)),Obj.API.N-1,'none');
[corrcoeff(ii,jj),idx]=max(abs(c));
corrcoeff(ii,jj)=corrcoeff(ii,jj)/sum(Obj.Data.IR(ii,jj,:).^2);
toaEst(ii,jj)=lag(idx);
end
end
end
%% ----------------------Fit-Models-to-estimated-TOA-----------------------
for ch=1:Obj.API.R
% Outlier detection: smooth TOA in horizontal planes
epsilon=5;
slope=zeros(Obj.API.M,1);
for ele=min(pos(:,2)):epsilon:max(pos(:,2)) %calculate slope for each elevation along azimuth
idx=find(pos(:,2)>ele-epsilon/2 & pos(:,2)<=ele+epsilon/2);
if numel(idx)>1
idx(length(idx)+1)=idx(1);
slope(idx(1:end-1),1)=diff(toaEst(idx,ch))./abs(diff(pos(idx,1)));
end
end
sloperms=sqrt(sum(slope.^2)/length(slope));
if sloperms<30/(length(find(pos(:,2)==0))/2)
sloperms=30/(length(find(pos(:,2)==0))/2);
end
for ele=min(pos(:,2)):epsilon:max(pos(:,2))
idx=find(pos(:,2)>ele-epsilon/2 & pos(:,2)<=ele+epsilon/2);
for ii=1:length(idx)-1
if abs(slope(idx(ii)))>sloperms
for jj=0:1
if ii+jj==0 || ii+jj==length(idx)
indicator_hor(idx(end),ch)=1;
else
indicator_hor(idx(mod(ii+jj,length(idx))),ch)=1;
end
end
end
end
clear idx
end
% Outlier detection: constant TOA in sagittal planes
epsilon=2;
for ii=1:20
sag_dev=zeros(Obj.API.M,1);
for lat=-90:epsilon:90
idx=find(pos(:,6)>lat-epsilon/2 & pos(:,6)<=lat+epsilon/2);
idx2=find(pos(:,6)>lat-epsilon/2 & pos(:,6)<=lat+epsilon/2 & indicator_hor(:,ch)==0 & indicator(:,ch)==0);
if length(idx2)>2
sag_dev(idx,1)=toaEst(idx,ch)-mean(toaEst(idx2,ch));
end
end
sag_var=sqrt(sum(sag_dev.^2)/length(sag_dev));
if sag_var<2
sag_var=2;
end
indicator_sag(:,ch)=abs(sag_dev)>sag_var;
indicator(:,ch)=(abs(sag_dev)>sag_var | indicator_hor(:,ch));
end
clear sag_dev; clear sag_var;
end
performance.indicator=indicator;
performance.outliers=sum(sum(indicator))/Obj.API.M/2*100;
performance.outliersl=sum(indicator(:,1))/Obj.API.M*100;
performance.outliersr=sum(indicator(:,2))/Obj.API.M*100;
if model
% Fit on-axis model to outlier adjusted set of estimated TOAs
for ch=1:Obj.API.R
p0_onaxis(ch,4)=min(toaEst(indicator(:,ch)==0,ch))/Obj.Data.SamplingRate;
p0offset_onaxis=[0.06 pi/4 pi/4 0.001];
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
if isoctave
[~,p_onaxis(ch,:)]=leasqr(x,y,p0_onaxis(ch,:),@ziegelwanger2013onaxis);
else
p_onaxis(ch,:)=lsqcurvefit(@ziegelwanger2013onaxis,p0_onaxis(ch,:),x,y,p0_onaxis(ch,:)-p0offset_onaxis,p0_onaxis(ch,:)+p0offset_onaxis,optimset('Display','off','TolFun',1e-6));
end
toa(:,ch)=ziegelwanger2013onaxis(p_onaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
% Fit off-axis model to outlier adjusted set of estimated TOAs
TolFun=[1e-5; 1e-6];
for ii=1:size(TolFun,1)
for ch=1:Obj.API.R
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
p0_offaxis(ch,:)=[p0_onaxis(ch,1) 0 0 0 p0_onaxis(ch,4) p0_onaxis(ch,2) p0_onaxis(ch,3)];
p0offset_offaxis=[0.05 0.05 0.05 0.05 0.001 pi pi];
if isoctave
[~,p_offaxis(ch,:)]=leasqr(x,y,p0_offaxis(ch,:),@ziegelwanger2013offaxis);
else
p_offaxis(ch,:)=lsqcurvefit(@ziegelwanger2013offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',TolFun(ii,1)));
end
toa(:,ch)=ziegelwanger2013offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
if abs(diff(p_offaxis(:,1)))>0.003 || abs(diff(p_offaxis(:,3)))>0.003
p_offaxis(:,[1 3])=p_offaxis([2 1],[1 3]);
for ch=1:Obj.API.R
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
p0_offaxis(ch,:)=[p_offaxis(ch,1) mean(p_offaxis(:,2)) p_offaxis(ch,3) mean(p_offaxis(:,4)) mean(p_offaxis(:,5)) p_offaxis(ch,6) p_offaxis(ch,7)];
p0offset_offaxis=[0.05 0.05 0.05 0.05 0.001 pi/2 pi/2];
if isoctave
[~,p_offaxis(ch,:)]=leasqr(x,y,p0_offaxis(ch,:),@ziegelwanger2013offaxis);
else
p_offaxis(ch,:)=lsqcurvefit(@ziegelwanger2013offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',TolFun(ii,1)));
end
toa(:,ch)=ziegelwanger2013offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
end
if abs(diff(p_offaxis(:,1)))<0.003 && abs(diff(p_offaxis(:,2)))<0.003 && abs(diff(p_offaxis(:,3)))<0.003 && abs(diff(p_offaxis(:,4)))<0.003
break
end
end
else
toa=toaEst;
p_offaxis=p0_offaxis;
end
Obj.Data.Delay=toa;
Obj.Data.p_onaxis=transpose(p_onaxis);
Obj.Data.p_offaxis=transpose(p_offaxis);
Obj.Data.performance=performance;
results.toa=toa;
results.p_onaxis=transpose(p_onaxis);
results.p_offaxis=transpose(p_offaxis);
results.performance=performance;
end %of function
function Obj=ARI_MinimalPhase(Obj)
Obj.Data.IR_min=zeros(size(Obj.Data.IR));
for jj=1:Obj.API.R
for ii=1:Obj.API.M
% h=squeeze(Obj.Data.IR(ii,jj,:));
h=[squeeze(Obj.Data.IR(ii,jj,:)); zeros(4096-Obj.API.N,1)];
% decompose signal
amp1=abs(fft(h));
% transform
amp2=amp1;
an2u=-imag(hilbert(log(amp1))); % minimal phase
% reconstruct signal from amp2 and an2u
% build a symmetrical phase
an2u=an2u(1:floor(length(h)/2)+1);
an2u=[an2u; -flipud(an2u(2:end+mod(length(h),2)-1))];
an2=an2u-round(an2u/2/pi)*2*pi; % wrap around +/-pi: wrap(x)=x-round(x/2/pi)*2*pi
% amplitude
amp2=amp2(1:floor(length(h)/2)+1);
amp2=[amp2; flipud(amp2(2:end+mod(length(h),2)-1))];
% back to time domain
h2=real(ifft(amp2.*exp(1i*an2)));
Obj.Data.IR_min(ii,jj,:)=h2(1:Obj.API.N);
end
end
end