function [Obj,results]=ziegelwanger2014(Obj,estimation,outlierDetection,model,p0_onaxis)
%ZIEGELWANGER2014 Time of arrival estimates
% Usage: [Obj,results]=ziegelwanger2014(data,estimation,outlierDetection,model,p0_onaxis)
%
% Input parameters:
% Obj: SOFA object
%
% estimation (optional): select one of the estimation methods
% 1: Threshold-Detection
% 2: Centroid of squared IR
% 3: Mean Groupdelay
% 4: Minimal-Phase Cross-Correlation (Max) (default)
% [TOAest]: pre-estimated TOAs
%
% outlierDetection (optional): detect outliers in estimated TOAs
% 0: off
% 1: on (default values: [0.05;0.01])
% [alpha r]: rejects outliers using the extreme Studentized
% deviance test with the significance level of ALPHA and upper
% bound of outlier rate R.
%
% model (optional): correct estimated toa, using geometrical TOA-Model
% 0: TOA estimated
% 1: off-axis TOA modeled (default)
% 2: on-axis TOA modeled
%
% p0_onaxis (optional): startvalues for lsqcurvefit
% dim 1: [sphere-radius in m,
% azimut of ear in radiants,
% elevation of ear in radiants,
% direction-independent delay in seconds]
% dim 2: each record channel
%
% Output parameters:
% Obj: SOFA Object
%
% results.toa: data matrix with time of arrival (TOA) for each impulse response (IR):
% dim 1: each toa in samples
% dim 2: each record channel
% results.p_onaxis: estimated on-axis model-parameters
% dim 1: [sphere-radius in m,
% azimut of ear in radiants,
% elevation of ear in radiants,
% direction-independent delay in seconds]
% dim 2: each record channel
% results.p_offaxis: estimated off-axis model-parameters
% dim 1: [sphere-radius in m,
% xM in m,
% yM in m,
% zM in m,
% direction-independent delay in seconds,
% azimut of ear in radiants,
% elevation of ear in radiants]
% dim 2: each record channel
%
% Estimates the Time-of-Arrival for each measurement in Obj (SOFA) and
% corrects the results with a geometrical model of the head.
%
% Requirements:
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Optimization Toolbox for Matlab
%
% 3) Data in hrtf/ziegelwanger2014
%
% Examples:
% ---------
%
% To calculate the model parameters for the on-axis time-of-arrival model
% (p_onaxis) and for the off-axis time-of-arrival model (p_offaxis) for a
% given HRTF set (SOFA object, 'Obj') with the minimum-phase
% cross-correlation estimation, use:
%
% [Obj,results]=ziegelwanger2014(Obj,4,1);
%
% See also: ziegelwanger2014onaxis, ziegelwanger2014offaxis,
% data_ziegelwanger2014, exp_ziegelwanger2014
%
% References:
% H. Ziegelwanger and P. Majdak. Modeling the direction-continuous
% time-of-arrival in head-related transfer functions. J. Acoust. Soc.
% Am., 135:1278-1293, 2014.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.6/doc/binaural/ziegelwanger2014.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria
%% ----------------------------convert to SOFA-----------------------------
if ~isfield(Obj,'GLOBAL_Version')
Obj=SOFAconvertARI2SOFA(Obj.hM,Obj.meta,Obj.stimPar);
end
%% ----------------------------check variables-----------------------------
if ~exist('estimation','var')
estimation=4;
else if isempty(estimation)
estimation=4;
end
end
if ~exist('outlierDetection','var')
outlierDetection=[0.05;0.01];
else if isempty(outlierDetection) || (isscalar(outlierDetection) && outlierDetection(1)>0)
outlierDetection=[0.05;0.01];
end
end
outlierDetection=prod(outlierDetection);
if ~exist('model','var')
model=1e-6;
else if isempty(model) || model==1
model=1e-6;
end
end
if ~exist('p0_onaxis','var')
p0_onaxis=[[0.0875; pi/2; 0; 0] [0.0875; -pi/2; 0; 0]];
else if isempty(p0_onaxis)
p0_onaxis=[[0.0875; pi/2; 0; 0] [0.0875; -pi/2; 0; 0]];
end
end
%% -------------------------initialize variables---------------------------
p0_onaxis=transpose(p0_onaxis);
p_onaxis=zeros(size(p0_onaxis));
p0_offaxis=zeros(2,7);
p_offaxis=p0_offaxis;
toa=zeros(Obj.API.M,Obj.API.R);
toa_onaxis=toa;
toa_offaxis=toa;
indicator=zeros(Obj.API.M,Obj.API.R);
pos(:,1:2)=Obj.SourcePosition(:,1:2);
%% -----------------------estimate time-of-arrival-------------------------
if isscalar(estimation)
hM=Obj.Data.IR;
toaEst=zeros(Obj.API.M,Obj.API.R);
switch estimation
case 1 %---------------------------Threshold---------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
toaEst(ii,jj)=find(abs(hM(ii,jj,:))==max(abs(hM(ii,jj,:))),1);
end
end
case 2 %---------------------------Centroid----------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
toaEst(ii,jj)=find(cumsum(hM(ii,jj,:).^2)>(sum(hM(ii,jj,:).^2)/2),1);
end
end
case 3 %---------------------------Groupdelay--------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
[Gd,F]=grpdelay(transpose(double(squeeze(hM(ii,jj,:)))),1,Obj.API.N*4,Obj.Data.SamplingRate*4);
toaEst(ii,jj)=mean(Gd(find(F>1000):find(F>5000)));
end
end
case 4 %---------------------------Minimal-Phase-----------------------
hMmin=ARI_MinimalPhase(Obj);
corrcoeff=zeros(Obj.API.M,Obj.API.R);
for ii=1:Obj.API.M
for jj=1:Obj.API.R
[c,lag]=xcorr(squeeze(hM(ii,jj,:)),squeeze(hMmin(ii,jj,:)),Obj.API.N*4-1,'none');
[corrcoeff(ii,jj),idx]=max(abs(c));
corrcoeff(ii,jj)=corrcoeff(ii,jj)/sum(hM(ii,jj,:).^2);
toaEst(ii,jj)=lag(idx);
end
end
end
else
toaEst=estimation;
end
%% --------------------Detect-Outliers-in-estimated-TOA--------------------
if outlierDetection>0
for ch=1:Obj.API.R
p0_onaxis(ch,4)=min(toaEst(indicator(:,ch)==0,ch))/Obj.Data.SamplingRate;
p0offset_onaxis=[0.06 pi pi/2 0.001];
x=pos(:,1:2)*pi/180;
y=toaEst(:,ch)/Obj.Data.SamplingRate;
if isoctave
fprintf('Sorry! Octave is not supported. This model requires MATLAB and the Optimization Toolbox!\n');
else
tmp=lsqcurvefit(@ziegelwanger2014onaxis,p0_onaxis(ch,:),x,y,p0_onaxis(ch,:)-p0offset_onaxis,p0_onaxis(ch,:)+p0offset_onaxis,optimset('Display','off','TolFun',1e-6));
end
[~,idx]=deleteoutliers(toaEst(:,ch)-ziegelwanger2014onaxis(tmp,pos(:,1:2)*pi/180)*Obj.Data.SamplingRate,outlierDetection*Obj.API.M);
indicator(idx,ch)=ones(length(idx),1);
end
end
%% ----------------------Fit-Models-to-estimated-TOA-----------------------
if model>0
% Fit on-axis model to outlier adjusted set of estimated TOAs
for ch=1:Obj.API.R
p0_onaxis(ch,4)=min(toaEst(indicator(:,ch)==0,ch))/Obj.Data.SamplingRate;
p0offset_onaxis=[0.06 pi pi/2 0.001];
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
if isoctave
fprintf('Sorry! Octave is not supported. This model requires MATLAB and the Optimization Toolbox!\n');
else
[p_onaxis(ch,:),performance.on_axis{ch}.resnormS,performance.on_axis{ch}.residualS,performance.on_axis{ch}.exitflag,performance.on_axis{ch}.output]=...
lsqcurvefit(@ziegelwanger2014onaxis,p0_onaxis(ch,:),x,y,p0_onaxis(ch,:)-p0offset_onaxis,p0_onaxis(ch,:)+p0offset_onaxis,optimset('Display','off','TolFun',1e-6));
toa(:,ch)=ziegelwanger2014onaxis(p_onaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
performance.on_axis{ch}.resnormS=sqrt(performance.on_axis{ch}.resnormS/(Obj.API.M-sum(indicator(:,ch))));
performance.on_axis{ch}.resnormP=norm((toaEst(:,ch)-toa(:,ch))/Obj.Data.SamplingRate)/sqrt(Obj.API.M);
end
toa_onaxis=toa;
% Fit off-axis model to outlier adjusted set of estimated TOAs
if model~=2
for ch=1:Obj.API.R
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
p0_offaxis(ch,:)=[mean(p_onaxis(:,1)) 0.001 -diff(p_onaxis(:,1))/2 0.001 mean(p_onaxis(:,4)) p_onaxis(ch,2) p_onaxis(ch,3)];
p0offset_offaxis=[abs(diff(p_onaxis(:,1))/4) 0.1 0.1 0.1 0.001 pi/4 pi/4];
if isoctave
fprintf('Sorry! Octave is not supported. This model requires MATLAB and the Optimization Toolbox!\n');
else
[p_offaxis(ch,:),performance.off_axis{ch}.resnormS,performance.off_axis{ch}.residualS,performance.off_axis{ch}.exitflag,performance.off_axis{ch}.output]=...
lsqcurvefit(@ziegelwanger2014offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',model));
toa(:,ch)=ziegelwanger2014offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
performance.off_axis{ch}.resnormS=sqrt(performance.off_axis{ch}.resnormS/(Obj.API.M-sum(indicator(:,ch))));
performance.off_axis{ch}.resnormP=norm((toaEst(:,ch)-toa(:,ch))/Obj.Data.SamplingRate)/sqrt(Obj.API.M);
end
toa_offaxis=toa;
end
else
toa=toaEst;
p_offaxis=p0_offaxis;
end
%Save to output variables
performance.outliers=indicator;
for ii=1:size(indicator,2)
performance.outlierRate(ii)=sum(indicator(:,ii))/Obj.API.M*100;
end
results.toa=toa;
results.toaEst=toaEst;
results.toa_onaxis=toa_onaxis;
results.toa_offaxis=toa_offaxis;
results.p_onaxis=transpose(p_onaxis);
results.p_offaxis=transpose(p_offaxis);
results.performance=performance;
if exist('corrcoeff','var')
results.performance.corrcoeff=corrcoeff;
end
end %of function
function hMmin=ARI_MinimalPhase(Obj)
hM=Obj.Data.IR;
hMmin=hM;
for jj=1:Obj.API.R
for ii=1:Obj.API.M
h=[squeeze(hM(ii,jj,:)); zeros(4096*4-size(hM,3),1)];
amp1=abs(fft(h));
amp2=amp1;
an2u=-imag(hilbert(log(amp1)));
an2u=an2u(1:floor(length(h)/2)+1);
an3u=[an2u; -flipud(an2u(2:end+mod(length(h),2)-1))];
an3=an3u-round(an3u/2/pi)*2*pi;
amp2=amp2(1:floor(length(h)/2)+1);
amp3=[amp2; flipud(amp2(2:end+mod(length(h),2)-1))];
h2=real(ifft(amp3.*exp(1i*an3)));
hMmin(ii,jj,:)=h2(1:Obj.API.N);
end
end
end