This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [b,a,delay,z,p,k]=gammatone(fc,fs,varargin)
%GAMMATONE Gammatone filter coefficients
% Usage: [b,a] = gammatone(fc,fs,n,betamul);
% [b,a] = gammatone(fc,fs,n);
% [b,a] = gammatone(fc,fs);
%
% Input parameters:
% fc : center frequency in Hz.
% fs : sampling rate in Hz.
% n : filter order.
% beta : bandwidth of the filter.
%
% Output parameters:
% b : nominator coefficients.
% a : denominator coefficients.
%
% GAMMATONE(fc,fs,n,betamul) computes the filter coefficients of a
% digital gammatone filter with center frequency fc, order n, sampling
% rate fs and bandwith determined by betamul. The bandwidth beta of
% each filter is determined as betamul times audfiltbw of the center
% frequency of corresponding filter.
%
% By default, the returned filter coefficients comes from the all-pole
% approximation described in Lyon (1997). The filters are normalized to
% have a 0 dB attenuation at the center frequency (another way of
% stating this is that their impulse responses will have unit area).
%
% GAMMATONE(fc,fs,n) will do the same but choose a filter bandwidth
% according to Glasberg and Moore (1990).
%
% GAMMATONE(fc,fs) will do as above for a 4th order filter.
%
% If fc is a vector, each entry of fc is considered as one center
% frequency, and the corresponding coefficients are returned as row
% vectors in the output.
%
% The inpulse response of the gammatone filter is given by:
%
% g(t) = a*t^(n-1)*cos(2*pi*fc*t)*exp(-2*pi*beta*t)
%
% GAMMATONE takes the following flags at the end of the line of input
% arguments:
%
% 'allpole' Compute the all-pole approximation of Gammatone
% filters by Lyon. This is the default
%
% 'classic' Compute the classical mixed pole-zero approximation of
% gammatone filters.
%
% 'complex' Generate filter coefficients corresponding to a
% complex valued filterbank modulated by exponential
% functions. This is useful for envelope extration
% purposes.
%
% 'real' Generate real-valued filters.
%
% 'casualphase' This makes the phase of each filter start at zero.
% This is the default.
%
% 'peakphase' This makes the phase of each filter be zero when the
% envelope of the impulse response of the filter peaks.
%
% To create the filter coefficients of a 1-erb spaced filter bank using
% gammatone filters use the following construction:
%
% [b,a] = gammatone(erbspacebw(flow,fhigh),fs,'complex');
%
% To apply the (complex valued) filters to an input signal, use
% FILTERBANKZ:
%
% outsig = 2*real(ufilterbankz(b,a,insig));
%
% References:
% A. Aertsen and P. Johannesma. Spectro-temporal receptive fields of
% auditory neurons in the grassfrog. I. Characterization of tonal and
% natural stimuli. Biol. Cybern, 38:223-234, 1980.
%
% R. Lyon. All pole models of auditory filtering. Diversity in auditory
% mechanics, World Scientific Publishing, Singapore, 1997.
%
% R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient
% auditory filterbank based on the gammatone function. APU report, 2341,
% 1988.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.6/doc/filters/gammatone.php
% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Stephan Ewert, Peter L. Søndergaard
% ------ Checking of input parameters ---------
% TODO: The phases of the filters all start at zero. This means that the
% real value of the impulse response of the filters does peak at the same
% time as the absolute value does. Include option to shift the phases so
% all filters have a distinct peak.
if nargin<2
error('%s: Too few input arguments.',upper(mfilename));
end;
if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
error('%s: fs must be a positive scalar.',upper(mfilename));
end;
if ~isnumeric(fc) || ~isvector(fc) || any(fc<0) || any(fc>fs/2)
error(['%s: fc must be a vector of positive values that are less than half ' ...
'the sampling rate.'],upper(mfilename));
end;
definput.keyvals.n=4;
definput.keyvals.betamul=[];
definput.flags.real={'real','complex'};
definput.flags.phase={'causalphase','peakphase'};
definput.flags.filtertype={'allpole','classic'};
[flags,keyvals,n,betamul] = ltfatarghelper({'n','betamul'},definput,varargin);
if ~isnumeric(n) || ~isscalar(n) || n<=0 || fix(n)~=n
error('%s: n must be a positive, integer scalar.',upper(mfilename));
end;
if isempty(betamul)
% This formula comes from patterson1988efficient, but it is easier to
% find in the Hohmann paper.
betamul = (factorial(n-1))^2/(pi*factorial(2*n-2)*2^(-(2*n-2)));
else
if ~isnumeric(betamul) || ~isscalar(betamul) || betamul<=0
error('%s: beta must be a positive scalar.',upper(mfilename));
end;
end;
% ------ Computation --------------------------
% ourbeta is used in order not to mask the beta function.
ourbeta = betamul*audfiltbw(fc);
nchannels = length(fc);
if flags.do_allpole
if flags.do_real
warning(['FIXME: The real-valued allpole filters are not scaled ' ...
'correctly.']);
b=zeros(nchannels,1);
a=zeros(nchannels,2*n+1);
% This is when the function peaks.
delay = 3./(2*pi*ourbeta);
for ii = 1:nchannels
% convert to radians
theta = 2*pi*fc(ii)/fs;
phi = 2*pi*ourbeta(ii)/fs;
alpha = -exp(-phi)*cos(theta);
b1 = 2*alpha;
b2 = exp(-2*phi);
a0 = abs( (1+b1*cos(theta)-1i*b1*sin(theta)+b2*cos(2*theta)-1i*b2*sin(2*theta)) / (1+alpha*cos(theta)-1i*alpha*sin(theta)) );
% Compute the position of the pole
atilde = exp(-phi - 1i*theta);
% Repeat the pole n times, and expand the polynomial
a2=poly([atilde*ones(1,n),conj(atilde)*ones(1,n)]);
% Scale to get 0 dB attenuation, FIXME: Does not work, works only
% for fc=fs/4
b2=a0^n;
if flags.do_peakphase
b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
end;
% Place the result (a row vector) in the output matrices.
b(ii,:)=b2;
a(ii,:)=a2;
end;
end;
if flags.do_complex
b=zeros(nchannels,1);
a=zeros(nchannels,n+1);
% This is when the function peaks.
delay = 3./(2*pi*ourbeta);
for ii = 1:nchannels
% convert to radians
theta = 2*pi*fc(ii)/fs;
phi = 2*pi*ourbeta(ii)/fs;
% Compute the position of the pole
% The commented line is the old code from the days of yore
%atilde = exp(-2*pi*ourbeta(ii)/fs - 1i*2*pi*fc(ii)/fs);
atilde = exp(-2*pi*ourbeta(ii)/fs + 1i*2*pi*fc(ii)/fs);
% Repeat the pole n times, and expand the polynomial
a2=poly(atilde*ones(1,n));
btmp=1-exp(-2*pi*ourbeta(ii)/fs);
b2=btmp.^n;
if flags.do_peakphase
b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
end;
% Place the result (a row vector) in the output matrices.
b(ii,:)=b2;
a(ii,:)=a2;
% Compute the z,p,k representation
z=[];
p=atilde*ones(1,n);
k=1;
end;
end;
else
if flags.do_real
b=zeros(nchannels,n+1);
a=zeros(nchannels,2*n+1);
% This is when the function peaks.
delay = 3./(2*pi*ourbeta);
for ii = 1:nchannels
% convert to radians
theta = 2*pi*fc(ii)/fs;
phi = 2*pi*ourbeta(ii)/fs;
alpha = -exp(-phi)*cos(theta);
b1 = 2*alpha;
b2 = exp(-2*phi);
a0 = abs( (1+b1*cos(theta)-1i*b1*sin(theta)+b2*cos(2*theta)-1i*b2*sin(2*theta)) / (1+alpha*cos(theta)-1i*alpha*sin(theta)) );
% Compute the position of the pole
atilde = exp(-phi-1i*theta);
% Repeat the conjugate pair n times, and expand the polynomial
a2 = poly([atilde*ones(1,n),conj(atilde)*ones(1,n)]);
% Compute the position of the zero, just the real value of the pole
btilde = real(atilde);
% Repeat the zero n times, and expand the polynomial
b2 = poly(btilde*ones(1,n));
% Scale to get 0 dB attenuation
b2=b2*(a0^n);
if flags.do_peakphase
b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
end;
% Place the result (a row vector) in the output matrices.
b(ii,:)=b2;
a(ii,:)=a2;
end;
% Octave produces small imaginary values
b=real(b);
a=real(a);
end;
if flags.do_complex
warning(['FIXME: The complex-valued mixed pole-zero filters are not scaled ' ...
'correctly.']);
b=zeros(nchannels,n+1);
a=zeros(nchannels,n+1);
% This is when the function peaks.
delay = 3./(2*pi*ourbeta);
for ii = 1:nchannels
% convert to radians
theta = 2*pi*fc(ii)/fs;
phi = 2*pi*ourbeta(ii)/fs;
alpha = -exp(-phi)*cos(theta);
b1 = 2*alpha;
b2 = exp(-2*phi);
a0 = abs( (1+b1*cos(theta)-1i*b1*sin(theta)+b2*cos(2*theta)-1i*b2*sin(2*theta)) / (1+alpha*cos(theta)-1i*alpha*sin(theta)) );
% Compute the position of the pole
% The line commented line below is the old code that returned
% negative frequencies.
%atilde = exp(-2*pi*ourbeta(ii)/fs - 1i*2*pi*fc(ii)/fs);
atilde = exp(-2*pi*ourbeta(ii)/fs + 1i*2*pi*fc(ii)/fs);
% Repeat the pole n times, and expand the polynomial
a2=poly(atilde*ones(1,n));
% Compute the position of the zero, just the real value of the pole
btilde = real(atilde);
% Repeat the zero n times, and expand the polynomial
b2 = poly(btilde*ones(1,n));
% Scale to get 0 dB attenuation
b2=b2*(a0^n);
if flags.do_peakphase
b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
end;
% Place the result (a row vector) in the output matrices.
b(ii,:)=b2;
a(ii,:)=a2;
end;
end;
end;