This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
%DEMO_BAUMGARTNER2014 Demo for sagittal-plane localization model from Baumgartner et al. (2014)
%
% DEMO_BAUMGARTNER2014(flag) demonstrates how to compute and visualize
% the baseline prediction (localizing broadband sounds with own ears)
% for a listener of the listener pool and the median plane using the
% sagittal-plane localization model from Baumgartner et al. (2014).
%
% Figure 1: Baseline prediction
%
% This demo computes the baseline prediction (localizing broadband
% sounds with own ears) for an exemplary listener (NH58).
%
% Predicted polar response angle probability of subject NH58 as a
% function of the polar target angle with probabilities encoded by
% brigthness.
%
% See also: baumgartner2014 exp_baumgartner2014 baumgartner2014virtualexp
% localizationerror
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.7/doc/demos/demo_baumgartner2014.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.7
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner
%% Settings
subID = 'NH58'; % subject ID of exemplary listener
lat = 0; % lateral target angle in degrees
runs = 3; % # of virtual experimental runs
%% Get listener's data
s = data_baumgartner2014('pool'); % load data of listener pool
ids = find(ismember({s.id},subID)); % index of exemplary listener
%% Run model with individual sensitivity S
[p,rang,tang] = baumgartner2014(s(ids).Obj,s(ids).Obj,'S',s(ids).S,'lat',lat);
%% Run virtual experiment
m = baumgartner2014virtualexp(p,tang,rang,'runs',2);
%% Calcualte performance measures
amtdisp('Performance Predictions:')
amtdisp('------------------------')
% via expectancy values:
[qe,pe] = baumgartner2014pmv2ppp(p,tang,rang,'print');
% and/or via responses drawn from virtual experiments
[f,r] = localizationerror(m,'sirpMacpherson2000');
perMacpherson2003 = localizationerror(m,f,r,'perMacpherson2003');
amtdisp(['Local polar error rate (%) ' num2str(perMacpherson2003,'%4.1f')])
%% Plot results
figure;
plot_baumgartner2014(p,tang,rang,m(:,6),m(:,8));
title(['Baseline prediction for ' s(ids).id]);