This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [cqmag,fc,cqmaghr,fvec] = cqdft( insig,varargin )
%CQDFT FFT-based filter bank with constant relative bandwidth according
% Usage: [cqmag] = cqdft( insig )
% [cqmag,fc,cqmaghr,fvec] = cqdft( insig,fs,flow,fhigh,bw )
%
% Input parameters:
% insig : Impulse response or complex spectrum
% fs : Sampling rate, default is 48kHz.
% flow : Lowest frequency, minimum: 0.5kHz, default is 2kHz
% fhigh : Highest frequency, default is, default is 16kHz
% bw : bandwidth, possible values 3,6,9,12, default is 6.
%
% Output parameters:
% cqmag : mean magnitudes of CQ-bands in dB
% fc : center frequencies of bands (geo. mean of corners)
% cqmaghr : same as cqmag but for all freq. bins (high resolution)
% fvec : freq. vector according to FFT-resolution
%
% CQDFT(insig) approximates a constant-Q filter bank by averaging the
% magnitude bins of a DFT. CQDFT results in 'bw' dB-magnitudes per octave.
%
% References:
% E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human
% sound localization. J. Acoust. Soc. Am., 112:1583-1596, 2002.
%
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.7/doc/filters/cqdft.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.7
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner, OEAW Acoustical Research Institute
definput.keyvals.fs=48000;
definput.keyvals.flow=2000;
definput.keyvals.fhigh=16000;
definput.keyvals.bw=6;
[flags,kv] = ltfatarghelper({'fs','flow','fhigh','bw'},definput,varargin);
% input signal given in time or frequency domain?
if isreal(insig) % -> TD
nfft = 2^12;%max(2^12,size(insig,1));
y = abs(fft(insig,nfft));
else % -> FD
y = abs(insig);
nfft = size(insig,1);
end
fvec = 0:kv.fs/nfft:kv.fs-kv.fs/nfft;
octs = log2(kv.fhigh/kv.flow); % # of octaves
jj = 0:octs*kv.bw;
n = round(2.^((jj)/kv.bw)*kv.flow/kv.fs*nfft); % startbins
fc = zeros(length(jj)-1,1); % center frequencies
cqmag = zeros(length(jj)-1,size(y,2),size(y,3)); % mean magnitudes of CQ-bands
cqmaghr = zeros(size(y)); % same but for all freq. bins (high resolution)
for ind = jj(1)+1:jj(end)
nj = n(ind+1)-n(ind);
idn = n(ind):n(ind+1)-1;
fc(ind) = sqrt(fvec(n(ind))*fvec(n(ind+1))); % geometric mean
cqmag(ind,:,:) = sqrt(1/(nj)*sum(y(idn,:,:).^2,1));
cqmaghr(idn,:,:) = repmat(cqmag(ind,:,:),[length(idn),1,1]);
end
cqmag = 20*log10(cqmag);
cqmaghr(nfft/2+2:end,:,:) = cqmaghr(nfft/2:-1:2,:,:);
cqmaghr = 20*log10(cqmaghr);
end