THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

DATA_MAJDAK2010 - Listener specific localization performance

Program code:

function data = data_majdak2010(varargin)
%DATA_MAJDAK2010 Listener specific localization performance
%   Usage: data = data_majdak2010(condition)
%
%   Output parameters:
%     data.id    : listener ID
%     data.mtx   : experimental data matrix conaining 9 colums
%                  col 1: target azimuth
%                  col 2: target elevation
%                  col 3: response azimuth
%                  col 4: response elevation
%                  col 5: lateral angle of target
%                  col 6: polar angle of target
%                  col 7: lateral angle of response
%                  col 8: polar angle of response
%
%   DATA_MAJDAK2010(condition) returns listener-specific experimental data
%   from Majdak et al. (2010) testing localization performance for various
%   experimental methods.
% 
%   The condition flag may be one of:
%
%     'HMD_M'   Head-mounted display and manual pointing. Testing of naive
%               subjects.
%     'HMD_H'   Head-mounted display, head pointing, naive subjects.
%     'Dark_M'  Dark room, manual pointing, naive subjects.
%     'Dark_H'  Dark room, head pointing, naive subjects.
%     'Learn_M' Acoustic learning condition with manual pointing. This is the default.
%     'Learn_H' Acoustic learning condition with head pointing.
%
%   References:
%     P. Majdak, M. J. Goupell, and B. Laback. 3-D localization of virtual
%     sound sources: Effects of visual environment, pointing method and
%     training. Atten Percept Psycho, 72:454-469, 2010.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.7/doc/humandata/data_majdak2010.php

% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.7
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Robert Baumgartner

%% Check input options

% Define input flags
definput.flags.condition = {'Learn_M','Learn_H','HMD_M','HMD_H','Dark_M','Dark_H'};

% Parse input options
[flags,kv]  = ltfatarghelper({},definput,varargin);


%% Extract data
x=amtload('majdak2010','data.mat');

C = find(ismember(x.condition,flags.condition));

for ll = 1:length(x.subject)
  
  if not(isempty(x.subject(ll).expData{C}))
    data(ll).mtx = real(x.subject(ll).expData{C}(:,1:8));
  end
  data(ll).id = x.subject(ll).id;

end