This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function [b,a]=gammachirp(fc,fs,varargin)
%GAMMACHIRP Gammachirp filter coefficients
% Usage: [b,a] = gammachirp(fc,fs,n,betamul);
% [b,a] = gammachirp(fc,fs,n);
% [b,a] = gammachirp(fc,fs);
%
% Input parameters:
% fc : center frequency in Hz.
% fs : sampling rate in Hz.
%
% gammachirp takes the following key-value pairs:
% 'order', n : filter order (order of Gamma function t^(OrderG-1) ).
% 'beta', b : bandwidth of the filter (exp(-2*pi*CoefERBw*ERB(f))).
% 'c', c : c-coefficient exp(j*2*pi*Frs + CoefC*ln(t)).
% 'phase', phase : initial phase (0 ~ 2*pi)
%
% gammachirp takes the following flags
% carrier : Carrier ('cos','sin','complex','envelope': 3 letters)
% norm : Normalization of peak spectrum level ('no', 'peak')
%
%
% Output parameters:
% b : nominator coefficients.
% a : denominator coefficients.
%
% GAMMACHIRP(fc,fs,n,betamul) computes the filter coefficients of a
% digital gammachirp filter with center frequency fc, order n, sampling
% rate fs and bandwith determined by betamul. The bandwidth beta of
% each filter is determined as betamul times audfiltbw of the center
% frequency of corresponding filter.
%
% By default, the returned filter coefficients comes from the all-pole
% approximation described in Lyon (1997). The filters are normalized to
% have a 0 dB attenuation at the center frequency (another way of
% stating this is that their impulse responses will have unit area).
%
% GAMMACHIRP(fc,fs) will do as above for a 4th order filter.
%
% If fc is a vector, each entry of fc is considered as one center
% frequency, and the corresponding coefficients are returned as row
% vectors in the output.
%
% The impulse response of the gammachirp filter is given by:
%
% g(t) = a*t^(n-1)*cos(2*pi*fc*t)*exp(-2*pi*beta*t)
%
%
%
% To create the filter coefficients of a 1-erb spaced filter bank using
% gammachirp filters use the following construction:
%
% [b,a] = gammachirp(erbspacebw(flow,fhigh),fs,'complex');
%
% To apply the (complex valued) filters to an input signal, use
% FILTERBANKZ:
%
% outsig = 2*real(ufilterbankz(b,a,insig));
%
% References:
% T. Irino and R. D. Pattersion. A time-domain, level-dependent auditory
% filter: The gammachirp. J. Acoust. Soc. Am., 101(412), 1997.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/common/gammachirp.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Toshio Irino, adapted for AMT by Clara Hollomey
% ------ Checking of input parameters ---------
if nargin<2
error('%s: Too few input arguments.',upper(mfilename));
end;
if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
error('%s: fs must be a positive scalar.',upper(mfilename));
end;
if ~isnumeric(fc) || ~isvector(fc) || any(fc<0) || any(fc>fs/2)
error(['%s: fc must be a vector of positive values that are less than half ' ...
'the sampling rate.'],upper(mfilename));
end;
definput.keyvals.n=4;
definput.keyvals.CoefERBw=1.019; % Default GammaTone value
ERB = ones(fc,1);
definput.keyvals.c=1;
definput.keyvals.phase=0;
definput.flags.carrier={'cos','sin','complex','envelope'};
definput.flags.norm={'no', 'peak'};
[flags,kv,n, c] = ltfatarghelper({'n','c'},definput,varargin);
if ~isnumeric(n) || ~isscalar(n) || n<=0 || fix(n)~=n
error('%s: n must be a positive, integer scalar.',upper(mfilename));
end
b = exp(-2*pi*kv.CoefERBw*ERB(fc));
ERBrate = fc2erb(fc);
ERBw = f2erb(fc);
LenGC1kHz = (40*max(n)/max(kv.CoefERBw) + 200)*fs/16000; % 2 Aug 96
ERBw1kHz = f2erb(1000);
if flags.do_sin kv.phase = kv.phase - pi/2*ones(1,length(fc)); end;
%%% Phase compensation
phase = kv.phase + c.*log(fc/1000); % relative phase to 1kHz
LenGC = fix(LenGC1kHz*ERBw1kHz./ERBw);
%%%%% Production of GammaChirp %%%%%
GC = zeros(length(fc),max(LenGC));
if nargout > 2
ERBwfc = f2erb(fc);
fpeak = fc + c.*ERBwfc.*kv.CoefERBw./n;
end
if nargout > 3, InstFreq = zeros(length(fc),max(LenGC)); end
for nch = 1:length(fc)
t = (1:LenGC(nch)-1)/fs;
GammaEnv = t.^(n(nch)-1).*exp(-2*pi*kv.CoefERBw(nch)*ERBw(nch)*t);
GammaEnv = [ 0 GammaEnv/max(GammaEnv)];
if flags.do_envelope
carrier = ones(size(GammaEnv));
elseif flags.do_complex
carrier = [ 0 exp(1i * (2*pi*fc(nch)*t + c(nch)*log(t) +phase(nch)) )];
else
carrier = [ 0 cos(2*pi*fc(nch)*t + c(nch)*log(t) +phase(nch))];
end;
GC(nch,1:LenGC(nch)) = GammaEnv.*carrier;
if nargout > 3,
InstFreq(nch,1:LenGC(nch)) = [0, [fc(nch) + c(nch)./(2*pi*t)]];
end
if flags.do_peak % peak gain normalization
[frsp, freq] = freqz(GC(nch,1:LenGC(nch)),1,LenGC(nch),SR);
ERBwp = f2erb(fc(nch));
fp = fc(nch) + c.*ERBwp.*kv.CoefERBw(nch)./n(nch);
[~, np] = min(abs(freq-fp));
GC(nch,:) = GC(nch,:)/abs(frsp(np));
end;
b = GC(nch, 1:LenGC(nch));
a = 1;
end