This documentation page applies to an outdated AMT version (1.0.0). Click here for the most recent page.
function difSTD=georganti2013(signal,P)
%GEORGANTI2013 Distance estimation
% Usage: difSTD = georganti2013(signal, P)
%
% Input parameters:
% signal : binaural input signal
%
% P.fs: sampling rate in Hz
%
% P.timeFr: Frame size in seconds
%
% P.fmin: lower frequency (Hz) for the BSDM STD calculation
%
% P.fmax: upper frequency (Hz) for the BSDM STD calculation
%
% Output parameters:
% difSTD: Binaural spectral-magnitude difference standard deviation (dB)
%
% See also: exp_georganti2013 exp_georganti2013 exp_baumgartner2017
%
% References:
% E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Extracting
% sound-source-distance information from binaural signals. In J. Blauert,
% editor, The Technology of Binaural Listening, Modern Acoustics and
% Signal Processing, pages 171--199. Springer Berlin Heidelberg, 2013.
% [1]http ]
%
% E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Sound source
% distance estimation in rooms based on statistical properties of
% binaural signals. Audio, Speech, and Language Processing, IEEE
% Transactions on, 21(8):1727--1741, Aug 2013.
%
% References
%
% 1. http://dx.doi.org/10.1007/978-3-642-37762-4_7
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/georganti2013.php
% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Verified
% #Author: Eleftheria Georganti
%
% Please send bug reports to:
% Eleftheria Georganti
% Postdoctoral Researcher
% Experimental Audiology, ENT
% University Hospital of Zurich/University of Zurich
% Zurich, Switzerland
% eleftheria.georganti@uzh.ch
if ~exist('P','var'), P=[]; end
if ~isfield(P,'fmin'), P.fmin=20; end % lower frequency in Hz - default value
if ~isfield(P,'fmax'), P.fmax=23000; end % upper frequency in Hz - default value
if ~isfield(P,'fs'), P.fs=44100; end
if ~isfield(P,'timeFr'), P.timeFr=1; end
P.sampleFr = P.fs * P.timeFr; % Frame size in samples
if ~isfield(P,'hop'), P.hop = P.sampleFr/2; end % Overlap
P.nFFT = P.sampleFr; % FFT points
P.freq = (P.fs/P.nFFT)*(0:(P.nFFT/2-1)); % Frequency index
fmin_id = min(find((P.freq>P.fmin)));
fmax_id = min(find((P.freq>=P.fmax)));
difSTD=zeros(1,length(1:P.hop:length(signal)-P.hop));
idx = 1;
for kk = 1:P.hop:length(signal)-P.hop
% Calculate magnitude spectrums in dB of the left & right signals
leftFFT = 20*log10(abs(fft(signal(kk:kk+P.hop-1,1),P.nFFT)));
rightFFT = 20*log10(abs(fft(signal(kk:kk+P.hop-1,2),P.nFFT)));
% Subtract the magnitude spectrums
specDIF = leftFFT(1:end/2)-rightFFT(1:end/2);
% Calculate the differential standard deviation for the
% frequency range of interest
difSTD(1,idx) = std(specDIF(fmin_id:fmax_id));
idx = idx+1;
end