%DEMO_BAUMGARTNER2014 Demo for sagittal-plane localization model from Baumgartner et al. (2014)
%
% DEMO_BAUMGARTNER2014(flag) demonstrates how to compute and visualize
% the baseline prediction (localizing broadband sounds with own ears)
% for a listener of the listener pool and the median plane using the
% sagittal-plane localization model from Baumgartner et al. (2014).
%
% Figure 1: Baseline prediction
%
% This demo computes the baseline prediction (localizing broadband
% sounds with own ears) for an exemplary listener (NH58).
%
% Predicted polar response angle probability of subject NH58 as a
% function of the polar target angle with probabilities encoded by
% brigthness.
%
% See also: baumgartner2014 exp_baumgartner2014 baumgartner2014_virtualexp
% localizationerror
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/demos/demo_baumgartner2014.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR : Robert Baumgartner
%% Settings
subID = 'NH58'; % subject ID of exemplary listener
lat = 0; % lateral target angle in degrees
runs = 3; % # of virtual experimental runs
%% Get listener's data
s = data_baumgartner2014('pool'); % load data of listener pool
ids = find(ismember({s.id},subID)); % index of exemplary listener
%% Run model with individual sensitivity S
[p,rang,tang] = baumgartner2014(s(ids).Obj,s(ids).Obj,'S',s(ids).S,'lat',lat);
%% Run virtual experiment
m = baumgartner2014_virtualexp(p,tang,rang,'runs',2);
%% Calcualte performance measures
amt_disp('Performance Predictions:','documentation');
amt_disp('------------------------','documentation');
% via expectancy values:
[qe,pe] = baumgartner2014_pmv2ppp(p,tang,rang,'print');
% and/or via responses drawn from virtual experiments
[f,r] = localizationerror(m,'sirpMacpherson2000');
perMacpherson2003 = localizationerror(m,f,r,'perMacpherson2003');
amt_disp(['Local polar error rate (%) ' num2str(perMacpherson2003,'%4.1f')],'documentation');
%% Plot results
figure;
plot_baumgartner2014(p,tang,rang,m(:,6),m(:,8));
title(['Baseline prediction for ' s(ids).id]);