This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
function [mappingData] = kelvasa2015_calibratemapping(varargin)
%KELVASA2015_CALIBRATEMAPPING Produces necessary mappings for localization model
% Usage:[mappingData] = kelvasa2015_calibratemapping(varargin)
%
% Input parameters:
% varargin : structure with all parameters required for model. If
% this is not included, default paramters are loaded.
%
%
% KELVASA2015_CALIBRATEMAPPING(varargin) processes a user specified
% calibration wavfile and extracts the necessary data required to map
% simulated bilateral neural outputs onto a predicted azimuthal angle.
% This function computes data required by all three localization models
% described in (Kelvasa & Dietz(2015)) and can therefore take several
% hours to process.
%
% The output structure mappingData has the following fields:
%
% 'calibHRTFsig' NxMxS matrix of signal levels in
% which N is the range of azimuthal
% angles overwhich the signal was computed,
% M is the number of time samples,and
% S are audio channels.
%
% 'calSpikeDiffPerNeuronPerAzi' NxMxS matrix of chan2 - chan1 spike
% rate differences in spikes/sec in
% which N is the range of azimuthal
% angles overwhich the signal was
% computed, M is the number of
% simulated AN fibers, and S is the
% number of time bins.
%
% 'calSpikeRatePerNeuronPerLevel' NxM matrix of spike rates in
% spikes/sec in which N is a range of
% signal levels in dB SPL and M is
% the number of simulated AN fibers
%
% 'calParameters' structure of model paramters used in
% processing calibration stimulus
%
%
%
% References:
% D. Kelvasa and M. Dietz. Auditory model-based sound direction
% estimation with bilateral cochlear implants. Trends in Hearing,
% 19:2331216515616378, 2015.
%
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/modelstages/kelvasa2015_calibratemapping.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Authors:
% Daryl Kelvasa (daryl.kelvasa@uni-oldenburg.de) 2016
% Mathias Dietz (mdietz@uwo.ca) 2016
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
definput.import={'kelvasa2015'};
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Load HRTF data
HRTF = SOFAload(fullfile((SOFAdbPath),...
'kelvasa2015',kv.HRTFfile));
[~,ind_elev] = min(abs(HRTF.SourcePosition(:,2)-kv.HRTFelevation));
[~,ind_dist] = min(abs(HRTF.SourcePosition(:,3)-kv.HRTFsourceDistance));
ind = find(sum([HRTF.SourcePosition(:,2) == HRTF.SourcePosition(ind_elev,2),...
HRTF.SourcePosition(:,3) == HRTF.SourcePosition(ind_dist,3)],2)...
==2);
HRTFnew.SourcePosition = HRTF.SourcePosition(ind,:);
HRTFnew.Data.IR = HRTF.Data.IR(ind,kv.HRTFchannels,:);
HRTFnew.Data.SamplingRate = HRTF.Data.SamplingRate;
HRTF = HRTFnew;
%% Set dB SPL offset
dboffset=71.778;
%% Main Code
%Initialize variables
[signal, fs] = amt_load('kelvasa2015',kv.localizationModelCalibWav);
signal = signal(1:6*fs,:);
sigLengthSec = size(signal,1)/fs;
signal = resample(signal,kv.FS_ACE,fs);
numWindows = sigLengthSec/kv.timeWindowSec;
numNeurons = kv.N_nervecells;
spikeRatePerNeuron = zeros(2,numNeurons,numWindows);
spikeDiffPerNeuronPerAzi = zeros(numel(kv.azis),numNeurons,numWindows);
%% Calibration of the AN Linear Rate Difference and Max Likelihood model
for ang = 1 : numel(kv.azis)
tic
%HRTF filter signal and choose microphone channels
[~,ind_ang] = min(abs(HRTF.SourcePosition(:,1)-kv.azis(ang)));
HRIR = resample(squeeze(HRTF.Data.IR(ind_ang,:,:))',...
kv.FS_ACE,HRTF.Data.SamplingRate);
HRTFchan1 = ifft(fft(signal).*fft(HRIR(:,1),numel(signal)));
HRTFchan2 = ifft(fft(signal).*fft(HRIR(:,2),numel(signal)));
HRIR = [HRTFchan1,HRTFchan2];
if kv.azis(ang) == 0
temp = HRIR(:,1)./rms(HRIR(:,1));
scalor = scaletodbspl(kv.localizationModelCalibStimulusLevelDB,[],dboffset);
scalor = rms(temp.*scalor)/rms(HRIR(:,1));
end
HRIR = HRIR .* scalor;
mappingData.calibHRTFsig(ang,:,:) = HRIR;
%Process signal with CI and AN models for right and left channels
for chan = 1 : 2
%ACE CI processing strategy
[electrodogram, vTime] = ...
kelvasa2015_ciprocessing(HRIR(:,chan),...
kv.FS_ACE,'argimport',flags,kv);
%Fredelake Hohmann CI/AN model
[APvec] = ...
kelvasa2015_anprocessing(electrodogram,...
vTime, 'argimport',flags,kv);
[spikeRatePerNeuron(chan,:,:), ~] = ...
kelvasa2015_anbinning(APvec,...
sigLengthSec,'argimport',flags,kv);
end
spikeDiffPerNeuronPerAzi(ang,:,:) = squeeze(spikeRatePerNeuron(2,:,:) - ...
spikeRatePerNeuron(1,:,:));
a = toc;
timeLeft = round((a*(numel(kv.azis)- ang))/60);
amt_disp(['calibrating with ',kv.localizationModelCalibWav,'.wav at ',...
num2str(kv.localizationModelCalibStimulusLevelDB),...
' dB Time left (min):', num2str(timeLeft)],'volatile');
end
amt_disp();
%% Calibration of the AN Rate Level localization model
% %Initialize variables
spikeRatePerNeuronPerLevel = zeros(numel(kv.dBRange), numNeurons);
signal = squeeze(mappingData.calibHRTFsig(1,:,1))';
for level = 1 : numel(kv.dBRange)
tic
%Adjust signal to level over which to compute rate level slopes (???)
temp = signal./rms(signal);
scalor = scaletodbspl(kv.dBRange(level),[],dboffset);
scalor = rms(temp.*scalor)/rms(signal(:,1));
HRTFsig = scalor.*signal;
%Process signal with CI and AN models for right and left channels
[electrodogram, vTime] = ...
kelvasa2015_ciprocessing(HRTFsig,...
kv.FS_ACE,'argimport',flags,kv);
[APvec] = ...
kelvasa2015_anprocessing(electrodogram,...
vTime,'argimport',flags,kv);
[spikeRatePerNeuron, ~] = ...
kelvasa2015_anbinning(APvec,...
sigLengthSec, 'argimport',flags,kv);
%Compute mean spike rate over all time windows
spikeRatePerNeuronPerLevel(level,:) = mean(spikeRatePerNeuron,2);
a = toc; timeLeft = round((a*(numel(kv.dBRange)- level))/60);
amt_disp(['Calibration with ',...
kv.localizationModelCalibWav,'.wav at ',...
num2str(kv.localizationModelCalibStimulusLevelDB),...
' dB Time left (min):', num2str(timeLeft)],'volatile');
end
amt_disp();
mappingData.calSpikeDiffPerNeuronPerAzi = spikeDiffPerNeuronPerAzi;
mappingData.calSpikeRatePerNeuronPerLevel = spikeRatePerNeuronPerLevel;
mappingData.calParameters = kv;