This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
function [y_est] = llado2022_evaluatenn(x_test,NN_pretrained)
%LLADO2022_EVALUATENN evaluate the neural network
% Usage: [y_est] = llado2022_evaluatenn(x_test,NN_pretrained)
%
% Input parameters:
% x_test : Features of the test subset
% NN_pretrained : Pretrained network
% hiddenLayerSize : Size of the hidden layer
%
% Output parameters:
% y_est : Estimated data
%
% LLADO2022_EVALUATENN gives the estimation uncertainty of the neural
% network
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/modelstages/llado2022_evaluatenn.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
for iter = 1:NN_pretrained.nIter
net_dir = NN_pretrained.preTrained_dir(1,end,iter).net;
net_uncertainty = NN_pretrained.preTrained_uncertainty(1,end,iter).net;
y_hat_dir(iter,:) = net_dir(x_test);
y_hat_uncertainty(iter,:) = net_uncertainty(x_test);
end
clear clipPos;
clipPos = find(y_hat_dir < -90);
y_hat_dir(clipPos) = -90;
clear clipPos;
clipPos = find(y_hat_dir > 90);
y_hat_dir(clipPos) = 90;
y_est(:,1) = mean(y_hat_dir);
y_est(:,2) = mean(y_hat_uncertainty);
end