This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
function out = moore2016_excitationpattern( f, in )
%MOORE2016_EXCITATIONPATTERN calculates the excitation pattern
%
% Input parameters:
% f : frequency at which to calculate the excitation pattern [Hz]
% in : input signal
%
% Output parameters:
% out : excitation pattern
%
% This code calculates the excitation patterns for the binaural loudness model moore2016
% in the version for TVL 2016 based on ANSI S3.4-2007 and Moore & Glasberg (2007).
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/modelstages/moore2016_excitationpattern.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
InputLevels = InputLevelPerERB(f,in);
ExcitationLevels = outputpower_ERBnumbers(InputLevels, f, in);
out = ExcitationLevels;
end
function out = outputpower_ERBnumbers(InputLevels, f, in)
ERBc = 1.75:0.25:39;
fc = erb2fc(ERBc);
Excitation = zeros( length(in), length(ERBc) );
for i=1:length(ERBc)
pu = get_p(fc(i)) .* ones(1,length(in));
pl = get_pl(fc(i),InputLevels);
p = pu .* ( f >= fc(i) ) + pl .* ( f < fc(i) );
g = ( f - fc(i) ) ./ fc(i);
ExcitationOfThisERBc = get_W(p,g) .* (g <= 4 ) .* 10.^(in./10);
Excitation((1:length(in)),i) = ExcitationOfThisERBc(1:length(in));
end
if ( size(Excitation,1) > 1 )
Excitation = sum(Excitation);
end
Excitation = 10 .* log(Excitation) ./ log(10);
out = Excitation;
end
function out = get_W(p,g)
g = abs(g);
out = ( 1 + p .* g ) .* exp( -1 .* p .* g );
end
function out = get_pl(f,X)
out = get_p(f) - 0.35 .* ( get_p(f) ./ get_p(1000) ) .* ( X - 51 );
end
function out = get_p(f)
% parameter for slope of auditory filter
out = 4 .* f ./ f2erb(f);
end
function InputLevels = InputLevelPerERB(f,in)
ERBw = f2erb(f);
InputLevels = zeros( length(in), length(in) );
for i = 1:length(in)
p = get_p( f(i) );
g = ( f - f(i) ) ./ f(i);
InputLevelsOfThisTone = (g <= 4 ) .* get_W(p,g);
InputLevelsOfThisTone = InputLevelsOfThisTone .* 10^(in(i)/10);
InputLevels( i, (1:length(in)) ) = InputLevelsOfThisTone;
end
InputLevels = sum(InputLevels);
InputLevels = 10*log(InputLevels)./log(10);
end