This documentation page applies to an outdated AMT version (1.2.0). Click here for the most recent page.
function out = sig_boyd2012(in,source,varargin)
%SIG_BOYD2012 - Stimulus from Boyd et al. (2012)
% Usage: out = sig_boyd2012(in,source,mix,azi)
%
% Input parameters:
% in : binaural input signal.
% source : monaural source signal.
% mix : mixing ratio ranging from 0 to 1. Default is 1 and means
% out is same as in.
% lp : low-pass cut off frequency. Default is NAN and means
% broadband.
% fs : sampling rate in Hz (only required for low-pass filtering).
% Default is 48 kHz.
% azi : azimuth (positive to the left).
%
% Output parameters:
% out : binaural output signal mixture.
%
% Time-aligned mixture between individualized binaural stimulus and
% head-absent simulation (ITD only).
%
%
% References:
% A. W. Boyd, W. M. Whitmer, J. J. Soraghan, and M. A. Akeroyd. Auditory
% externalization in hearing-impaired listeners: The effect of pinna cues
% and number of talkers. J. Acoust. Soc. Am., 131(3):EL268--EL274, 2012.
% [1]www: ]
%
% References
%
% 1. http://dx.doi.org/10.1121/1.3687015
%
%
% Url: http://amtoolbox.org/amt-1.2.0/doc/signals/sig_boyd2012.php
% Copyright (C) 2009-2022 Piotr Majdak, Clara Hollomey, and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.2.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
definput.keyvals.mix = 2;
definput.keyvals.lp = nan;
definput.keyvals.fs = 48e3;
definput.keyvals.azi = -30;
[flags,kv] = ltfatarghelper({'mix','lp','fs','azi'},definput,varargin);
% create time-aligned head-absent simulation
[scor,lag] = xcorr(in(:,1),source(:));
[~,iL] = max(abs(scor));
iL = lag(iL);
[~,iR] = max(abs(xcorr(in(:,2),source(:))));
iR = lag(iR);
ha = zeros(length(in),2);
ha(iL+(1:length(source)),1) = source;
ha(iR+(1:length(source)),2) = source;
if kv.azi > 0
ha = fliplr(ha);
end
SPL = mean(dbspl(in));
ha = scaletodbspl(ha,SPL, 100);
% mixing
out = kv.mix*in + (1-kv.mix)*ha;
% low-pass filtering
if not(isnan(kv.lp) || isempty(kv.lp))
[b,a]=butter(10,2*kv.lp/kv.fs,'low');
out = filter(b,a,out);
end
end