This documentation page applies to an outdated AMT version (1.3.0). Click here for the most recent page.
function [optsigmin,optsigmax] = hauth2020_ecprocess4optsigs(optsigL,optsigR,ECparams,fs,bin_inaccuracy)
%HAUTH2020_ECPROCESS4OPTSIGS Equalization-Cancellation process
%
% Usage:
% [optsigmin,optsigmax] = hauth2020_ecprocess4optsigs(optsigL,optsigR,ECparams,fs,bin_inaccuracy)
%
% Input parameters:
% optsigL : left ear optional signal
% optsigR : right ear optional signal
% ECparams : Parameters for the EC process
% fs : sampling frequency
% bin_inaccuracy : flag indicating the use of (1) binaural processing
% inaccuracies or (0) assuming binaural processing to be deterministic
%
% Output parameters:
% optsigmin : EC processed optional signal using minimization strategy
% optsigmax : EC processed optional signal using maximization strategy
%
%
% HAUTH2020_ECPROCESS4OPTSIGS applies the Equalization-Cancellation
% process in the frequency domain to the optional signals.
% The Equalization is applied two both ears symmetrically.
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/hauth2020_ecprocess4optsigs.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Christopher F. Hauth (2020)
% #Author: Dr. Thomas Brand (2020)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%--------------------------------------------------------------------------
orig_len = length(optsigL);
optsigLFFT = fft(optsigL,ECparams.fftpoints);
optsigRFFT = fft(optsigR,ECparams.fftpoints);
f = linspace(0,fs/2,floor(ECparams.fftpoints./2+1))';
% invert frequency vector for complex conjugate
f_inv = f(end-1:-1:2);
% frequency vector in rad
omega = 2.*pi*[f;f_inv];
% copy signals to generate buffer for processed signals
FFToptsigLeq = optsigLFFT;
FFToptsigReq = optsigRFFT;
%--------------------------------------------------------------------------
%% Apply Equalization Mechanism %%
% calculate phase factor for left and right ear with a set of gaussian
% distributed RVs as binaural processing inaccuracies
if bin_inaccuracy
for kk = 1:size(ECparams.errorLR,2)
phaseL(:,kk) = exp(-1j.*omega(1:(end/2)+1).*(ECparams.EC_tau./2 + ECparams.errorLR(1,kk)));
phaseR(:,kk) = exp(+1j.*omega(1:(end/2)+1).*(ECparams.EC_tau./2 + ECparams.errorLR(2,kk)));
% complex conjugate
phaseLcc(:,kk) = exp(+1j.*omega((end/2)+2:end).*(ECparams.EC_tau./2 + ECparams.errorLR(1,kk)));
phaseRcc(:,kk) = exp(-1j.*omega((end/2)+2:end).*(ECparams.EC_tau./2 + ECparams.errorLR(2,kk)));
end
% take the mean over all phase terms to obtain averaged processing
% binaural processing inaccuracy
phaseL = mean(phaseL,2);
phaseLcc = mean(phaseLcc,2);
phaseR = mean(phaseR,2);
phaseRcc = mean(phaseRcc,2);
else
phaseL = exp(-1j.*omega(1:(end/2)+1).*(ECparams.EC_tau./2));
phaseR = exp(+1j.*omega(1:(end/2)+1).*(ECparams.EC_tau./2));
% complex conjugate
phaseLcc = exp(+1j.*omega((end/2)+2:end).*(ECparams.EC_tau./2));
phaseRcc = exp(-1j.*omega((end/2)+2:end).*(ECparams.EC_tau./2));
end
% modify signals
% Left ear
FFToptsigLeq(1:(end/2)+1) = FFToptsigLeq(1:(end/2)+1).*phaseL;
FFToptsigLeq((end/2)+2:end)= FFToptsigLeq((end/2)+2:end).*phaseLcc;
% Right ear
FFToptsigReq(1:(end/2)+1) = FFToptsigReq(1:(end/2)+1).*phaseR;
FFToptsigReq((end/2)+2:end)= FFToptsigReq((end/2)+2:end).*phaseRcc;
%--------------------------------------------------------------------------
%% Apply Cancellation %%
FFToptsigMin = FFToptsigLeq - FFToptsigReq; % destructive interference
FFToptsigMax = FFToptsigLeq + FFToptsigReq; % constructive interference
%--------------------------------------------------------------------------
%% Apply IFFT and cut signals
% Level minimization
optsigmin = real(ifft(FFToptsigMin));
optsigmin = optsigmin(1:orig_len);
% Level maximization
optsigmax = real(ifft(FFToptsigMax));
optsigmax = optsigmax(1:orig_len);
%--------------------Licence ---------------------------------------------
% Copyright (c) <2020> Christopher Hauth
% Dept. Medical Physics and Acoustics
% Carl von Ossietzky University Oldenburg
% Permission is hereby granted, free of charge, to any person obtaining
% a copy of this software and associated documentation files
% (the "Software"), to deal in the Software without restriction, including
% without limitation the rights to use, copy, modify, merge, publish,
% distribute, sublicense, and/or sell copies of the Software, and to
% permit persons to whom the Software is furnished to do so, subject
% to the following conditions:
% The above copyright notice and this permission notice shall be included
% in all copies or substantial portions of the Software.
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
% EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
% OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
% IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
% CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
% TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
% SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
% END OF FILE