function [x_feat] = llado2022_binauralfeats(ir_input,stim,fs)
%LLADO2022_BINAURALFEATS calculates binaural features
% Usage: [x_feat] = llado2022_binauralfeats(ir_input,stim,fs);
%
% Input parameters:
% ir_input : Impulse response according to the following matrix
% dimensions: direction x time x channel/ear
% stim : stimulus
% fs : samplef frequency
%
% Output parameters:
% x_feat : binaural features according to the following matrix
% dimensions: nOutputs x features. Features combine the
% itd values below 1.5 kHz (rows 1-18) and ild values
% over 1 kHz (rows 19-36).
%
% Binaural auditory model based on the example 13.6.2 in: Ville Pulkki and
% Matti Karjalainen. Communication acoustics: an introduction to
% speech, audio and psychoacoustics. John Wiley & Sons, 2015.
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/llado2022_binauralfeats.php
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB M - Communication Systems
% #Author: Pedro Llado (2022)
% #Author: Petteri Hyvärinen (2022)
% #Author: Ville Pulkki (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
if(ndims(ir_input) == 3)
nIRs = length(ir_input(:,1,1));
ir = ir_input;
else
if(ismatrix(ir_input) == 1)
nIRs = 1;
ir(1,:,:) = ir_input;
else
amt_disp('Wrong input');
end
end
%% USING AMTOOLBOX FOR GAMMA TONE MODEL %%%%%
%create of a gammatone filter bank using the AMT function
%(http://amtoolbox.sourceforge.net)
%
for n_ir = 1:nIRs
%convolution: stimulus - hrirs
insig = [conv(stim,ir(n_ir,:,1)) conv(stim,ir(n_ir,:,2))];
%some parameters for auditory model
fLow = 50;%the lowest characteristic frequency of the filter bank
fHigh = 8000;%and the highest
fCut = 1000; % cut-off frequency of the low-pass filter
maxLag= floor(0.00067*fs); % IACC-values are computed within-1...1 ms
%FILTERS CHARACTERISTIC FREQUENCIES
cfs = erbspacebw(fLow,fHigh); %charact. frequencies of the filter bank
[b,a] = gammatone(cfs,fs,'complex');
%'complex' Generate filter modulated by exponential functions
% b,a: nominator,denominator coefficients
%% Windowing init
% Determine length of input signal
nSamples = size(insig,1);
% Block parameter
blockSec = 20e-3; % Block size in seconds
hopSec = 10e-3; % Step size in seconds
% Block processing parameters
blockSamples = 2 * round(fs * blockSec / 2);
hopSamples = 2 * round(fs * hopSec / 2);
overSamples = blockSamples - hopSamples;
%Haning Window
w = hann(blockSamples);
% Calculate number of frames
nFrames = fix((nSamples-overSamples)/hopSamples);
for i = 1 : nFrames
%GENERATING FILTERS (UFILTERBANKZ) AND FILTERING THE INDIVIDUAL SIGNALS
%processing the signal through the filter bank
filterOut(i).left=2*real(ufilterbankz(b,a,insig((i-1)*hopSamples+1:...
(i-1)*hopSamples+blockSamples,1)));
filterOut(i).right=2*real(ufilterbankz(b,a,insig((i-1)*hopSamples+1:...
(i-1)*hopSamples+blockSamples,2)));
%%%%%EMULATION OF THE NEURAL TRANSDUCTION with :
% 1) half-wave rectification and
rectified(i).left = filterOut(i).left.*(filterOut(i).left>0);
rectified(i).right = filterOut(i).right.*(filterOut(i).right>0);
% 2) low-pass filtering of the filter bank output
%a first-order IIR filter is used as the low-pass filter
beta = exp(-fCut/fs);
outSig(i).left = filter(1-beta,[1 -beta],rectified(i).left);
outSig(i).right = filter(1-beta,[1 -beta],rectified(i).right);
%%%%%COMPUTE INTERAURAL CROSS-CORRELATION AT EACH FREQ BAND
iaccFuncts = zeros(2*maxLag+1,length(cfs));
lagValues = (-maxLag:maxLag)./fs;% vector of lags at fs from min to max
for freqInd=1:length(cfs)
iaccFuncts(:,freqInd) = xcorr(outSig(i).left(:,freqInd),...
outSig(i).right(:,freqInd),maxLag,'coeff'); %COEFF:
%Normalizes the sequence so that the
%autocorrelations at zero lag equal 1
end
%%%%%COMPUTE ITD FOR EACH FREQ BAND
[~,lag] = max(iaccFuncts);
itdEst(i,:) = lagValues(lag); % Time corresponding to lag displacement
%%%%%COMPUTE ILD FOR EACH FREQ BAND
ildEst(i,:) = dbspl(outSig(i).right(:,:))-dbspl(outSig(i).left(:,:));
%% Store binaural faetures for the next stage of the model
end
itdild_feat(n_ir,4:35) = mean(itdEst(:,1:end));
itdild_feat(n_ir,36:67) = mean(ildEst(:,1:end));
%%%%%
end
x_feat = [itdild_feat(:,4:21)';itdild_feat(:,50:end)']; % Use ITD below 1.5 kHz and ILD over 1 kHz
end