function Pfiring = verhulst2018_auditorynerve(Vm,fs,kSR,kmax_or_cf,version_year)
%VERHULST2018_AUDITORYNERVE Auditory nerve models used by Verhulst et al. 2018 and 2015
%
% Auditory nerve models used in the models by Verhulst et al. 2018 (if
% version_year == 2018) or Verhulst et al. 2015 (if version_year == 2015).
% Both versions are based on the three-store diffusion model of Westerman
% and Smith (1988).
%
% License:
% --------
%
% This model is licensed under the UGent Academic License. Further usage details are provided
% in the UGent Academic License which can be found in the AMT directory "licences" and at
% <https://raw.githubusercontent.com/HearingTechnology/Verhulstetal2018Model/master/license.txt>.
%
% References:
% S. Verhulst, H. Bharadwaj, G. Mehraei, C. Shera, and
% B. Shinn-Cunningham. Functional modeling of the human auditory
% brainstem response to broadband stimulation. jasa, 138(3):1637--1659,
% 2015.
%
% S. Verhulst, A. Altoè, and V. Vasilkov. Functional modeling of the
% human auditory brainstem response to broadband stimulation.
% hearingresearch, 360:55--75, 2018.
%
%
% Url: http://amtoolbox.org/amt-1.3.0/doc/modelstages/verhulst2018_auditorynerve.php
% #License: ugent
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal PYTHON C
% #Author: Alejandro Osses (2020): primary implementation based on https://github.com/HearingTechnology/Verhulstetal2018Model
% #Author: Piotr Majdak (2021): adaptations for the AMT 1.0
% This file is licenced under the terms of the UGent Academic License, which details can be found in the AMT directory "licences" and at <https://raw.githubusercontent.com/HearingTechnology/Verhulstetal2018Model/master/license.txt>.
% For non-commercial academic research, you can use this file and/or modify it under the terms of that license. This file is distributed without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose.
% #License: ugent
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal PYTHON C
% #Author: Alejandro Osses (2020): primary implementation based on https://github.com/HearingTechnology/Verhulstetal2018Model
% #Author: Piotr Majdak (2021): adaptations for the AMT 1.0
dt=1/fs;
%%% 1. Parameters
% 1.1 Fitted parameters:
if nargin < 3; kSR = 68.5; end % Spontanous rate [spikes/s], param for HSR
if nargin < 4; kmax_or_cf = 3000; end % Peak exocytosis rate [spikes/s], param for HSR
if nargin < 5; version_year = 2018; end
% Memory allocation:
[N_samples,N_ch] = size(Vm);
Pfiring=zeros(N_samples,N_ch); % Memory allocation
switch version_year
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 2018
kmax = kmax_or_cf;
alpha_l = 220; % reserve pool max. replenishment rate [spikes/s]
L = 60; % [Nr.] RP size: Max. vesicles in the second pool
s = 1.5e-3; % [mV] Sensitivity of the Boltzmann function relating V_IHC and driven exocytosis rate
% 1.2 Parameters from literature:
alpha_q = 700; % RRP maximum replenishment rate [spikes/s] (Pangrisc 2010,Chapocnikov 2014)
M = 14; % Max. vesicles in the ready release pool or release sites (Meyer 2009). With the paramaters is 250 release/s, because of refractoriness the steady state spike rate goes around 200 spike/s
tau_r = 0.6e-3; % Time constant of relative refractoriness (Peterson and Heil 2014)
tau_a = 0.6e-3; % Time constant of absolute refractoriness (Peterson and Heil 2014)
tau_Ca = 0.2e-3; % Verhulst2018a, in Eq. (11). Time constant of the Ca^2+ channel (Johnson and Marcotti 2008)
V_rest = -0.05703; % resting_potential at equilibrium, from IHC model
% peak_potential=-0.04; % peak resting potential at 100 dB 4 kHz (where nerve fibers saturate)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Memory allocation:
eta= nan(N_samples,N_ch);
k = nan(N_samples,N_ch);
qt = nan(N_samples,N_ch);
lt = nan(N_samples,N_ch);
rel_refract=nan(N_samples,N_ch);
available=nan(N_samples,N_ch);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Steady-state values:
L_steady = L*(1 -kSR/alpha_l); % Initial Nr. of vescicles in RP
M_steady = M*(L_steady/L-kSR/alpha_q); % Initial Nr. of vescicles in RRP
%%% End of Steady-state values
alpha_q_dt = alpha_q*dt; % [spikes per unit of time]
alpha_l_dt = alpha_l*dt; % [spikes per unit of time]
% Conversion from time constants
alpha_a = exp(-dt/tau_a);
alpha_r = exp(-dt/tau_r);
alpha_Ca = exp(-dt/tau_Ca);
% Calculations from the Equations in Verhulst2018a:
V05_SR = log((kmax-kSR)/kSR)*s+V_rest; % Eq. (13)
eta_inf = sqrt(1./(1+exp(-(Vm-V05_SR)/s))); % Eq. (11)
%%% parameters for refractoriness
rel_refract0 = 0; % how much the firing probability decreases due to relative refractoriness
available0 = 1.0; % number of fibers not in a refractory state
dly_a = round(tau_a*fs); % length of buffer to store the firing history (in order to account for absolute refractoriness)
buf_ref = zeros([dly_a N_ch]); % buffer to store the history of firing (1001, 60)
idx_buf=1;
pp=kmax/M_steady; % multiplier relating the activation nonlinearity (between 0 and 1) with actual firing rate
% parameters to relate Vm with firing rate
eta0=sqrt(1/(1+exp(-(V_rest-V05_SR)/s)))+zeros([1 N_ch]); % driven exocytosis rate at rest
% take the square root, filter it with a first order filter and then square it. This is
% equivalent to a second order activation of the ion channels
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
dl_description = 'replenishReserve';
dr_description = 'replenishRRP';
kt0 = pp*(eta0.^2); % vesicleReleaseRate, does not change
kdt = kt0*dt;
zero_time=round(50e-3*fs);
%%% Filling in the buffer:
qt_here = M_steady; % initial value
lt_here = L_steady;
for i=1:zero_time
ydt=kdt.*qt_here; % 'ejected'
dl = alpha_l_dt*(L-lt_here)/L; % dl - replenishReserve
dr = alpha_q_dt*max(lt_here/L-qt_here/M,0); % dr - replenishRRP
qt(i,:) = qt_here + dr - ydt;
lt(i,:) = lt_here - dr + dl;
firing0 = (available0-rel_refract0).*ydt;
Pfiring_dly_a = buf_ref(idx_buf,:); % Pfiring_dly_a: 'recovered'
rel_refract0 = alpha_r*rel_refract0+(1-alpha_a)*Pfiring_dly_a;
available0 = available0-firing0+Pfiring_dly_a;
buf_ref(idx_buf,:)=firing0;
idx_buf=mod(idx_buf+1,dly_a);
if idx_buf == 0
idx_buf = dly_a;
end
end
for i=1:N_samples
% suffix 'prev' stands for 'previous':
if i ~= 1
eta_prev = eta(i-1,:);
qt_prev = qt(i-1,:);
lt_prev = lt(i-1,:);
available_prev = available(i-1,:);
rel_refract_prev = rel_refract(i-1);
else
% Using initial values if i==1:
eta_prev = eta0;
qt_prev = M_steady;
lt_prev = L_steady;
available_prev = available0;
rel_refract_prev = rel_refract0;
end
eta(i,:) = alpha_Ca*eta_prev+(1-alpha_Ca)*eta_inf(i,:); % Analytical solution of Eq. (11)
k(i,:) = pp*(eta(i,:).^2); % yt - effective exocytosis rate
ydt = k(i,:).*qt_prev*dt; % Eq. (14.1) -- kdt: Probability that one vescicle is released, text after Eq. (14)
dr = alpha_q_dt*max(lt_prev/L-qt_prev/M,0); % Eq. (14.3), but derivated
dl = alpha_l_dt*(L-lt_prev)/L; % Eq. (14.4)
qt(i,:) = qt_prev + dr - ydt; % Eq. (14.2), populating the ready-releasable pool (RRP) of neurotransmitter
lt(i,:) = lt_prev - dr + dl; % populating the reserve pool (RP) of neurotransmitter
P_Rel = available_prev-rel_refract_prev; % rel_refract: relative refractoriness
Pfiring(i,:) = P_Rel.*ydt;
Pfiring_dly_a(i,:)=buf_ref(idx_buf,:); % Contains 'Pfiring(i-1)'
rel_refract(i,:) = alpha_a*rel_refract_prev+(1-alpha_r)*Pfiring_dly_a(i,:);
rel_refract(i,:) = alpha_a*rel_refract_prev+(1-alpha_r)*Pfiring_dly_a(i,:);
available(i,:) = available_prev-(Pfiring(i,:)-Pfiring_dly_a(i,:));
buf_ref(idx_buf,:)=Pfiring(i,:); % overwrites already used buffer with sample to be used later
idx_buf = mod(idx_buf+1,dly_a);
if idx_buf == 0
idx_buf = dly_a;
end
end
Pfiring = Pfiring/dt; % AO, Verhulst2018a, Eq. (16)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
case 2015
% def anf_model(Vm):
cf = transpose(kmax_or_cf(:)); % makes sure 'cf' is a row array
Vth = 50e-6; % [V] - Vihc threshold below which the AN remains at SR, for HSR
Vth_SR = 2e-3 + Vth; % [V] - slightly more than 2e-3. Vihc at ~40 dB for LSR, MSR
Vsat_max= 1e-3; % [V] - Vihc yielding maximum PI
kSR = kSR/(1-0.75e-3*kSR)*ones(1,N_ch); % to compensate for the division at the end of the processing chain
A_SS = 150+(cf/100.0); % Only frequency dependence here, comes from Liberman1978 */
TauR = 2e-3; % Rapid Time Constant eq.10
TauS = 60e-3; % Short Time Constant eq.10
A_RS = kSR; % Ratio of A_slow and A_fast
PTS=1+(6*kSR/(6+kSR));
AR = (A_RS/(1+A_RS))*(PTS*A_SS-A_SS);
AST = (1./(1+A_RS)).*(PTS*A_SS-A_SS);
PI1 = kSR.*(PTS*A_SS-kSR)./(PTS*A_SS.*(1-kSR./A_SS)); % Verhulst2015, Eq. 9
PI2 = (PTS*A_SS-kSR)./(1-kSR./A_SS); % Verhulst2015, Eq. 10. From original Westerman
CG = 1;
gamma1 = CG./kSR;
gamma2 = CG./A_SS;
k1 = -1/TauR;
k2 = -1/TauS;
nume = (1-((PTS*A_SS)./kSR));
deno = gamma1.*((AR.*(k1-k2)./(CG*PI2))+(k2./(PI1.*gamma1))-(k2./(PI2.*gamma2)));
VI0=nume./deno;
% Same numerator, but slightly different denominator:
deno = gamma1.*((AST*(k2-k1)./(CG*PI2))+(k1./(PI1.*gamma1))-(k1./(PI2.*gamma2)));
VI1 = nume./deno;
VI=(VI0+VI1)/2;
alpha=(CG*TauR*TauS)./A_SS;
beta=(1/TauS+1/TauR)*alpha;
theta1=(alpha.*PI2)./VI;
theta2=VI./PI2;
theta3=1./A_SS-1./PI2;
PL=(((beta-theta2.*theta3)./theta1)-1).*PI2;
PG=1./(theta3-1./PL);
VL=theta1.*PL.*PG;
CI=kSR./PI1; % CI, or 'q(t)'- concentration of synaptic neurotransmitters in the immediate store
CL=CI.*(PI1+PL)./PL;
for i = 1:N_samples
PI=((PI2-PI1)./(Vsat_max)).*(Vm(i,:)-(Vth_SR./exp(kSR)))+PI1; % Eq. 8
idx_PI_rest=find(Vm(i,:)<(Vth+(Vth_SR./exp(kSR))));
PI(idx_PI_rest)=PI1(idx_PI_rest); % Eq. 7
CI_prev = CI;
CI = CI + (dt./VI).*(-PI.*CI + PL.*(CL-CI));
CL = CL + (dt./VL).*(-PL.*(CL - CI_prev) + PG.*(CG - CL));
temp = 1./PG+1./PL+1./PI;
CI_n=find(CI<0);
CI(CI_n) = CG./(PI(CI_n).*temp(CI_n));
CL(CI_n) = CI(CI_n).*(PI(CI_n)+PL(CI_n))./PL(CI_n);
Pfiring(i,:) =PI.*CI; % Verhulst2015, Eq. 6
end
disp('')
end