THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.

View the help

Go to function

GAMMATONE - Gammatone filter coefficients

Program code:

function [b,a,delay,z,p,k]=gammatone(fc,fs,varargin)
%GAMMATONE  Gammatone filter coefficients
%   Usage: [b,a] = gammatone(fc,fs,n,betamul);
%          [b,a] = gammatone(fc,fs,n);
%          [b,a] = gammatone(fc,fs);
%
%   Input parameters:
%      fc    : center frequency in Hz.
%      fs    : sampling rate in Hz.
%      n     :  filter order.
%      beta  :  bandwidth of the filter.
%
%   Output parameters:
%      b     :  nominator coefficients.
%      a     :  denominator coefficients.
%
%   GAMMATONE(fc,fs,n,betamul) computes the filter coefficients of a
%   digital gammatone filter with center frequency fc, order n, sampling
%   rate fs and bandwith determined by betamul. The bandwidth beta of
%   each filter is determined as betamul times audfiltbw of the center
%   frequency of corresponding filter.
%
%   By default, the returned filter coefficients comes from the all-pole
%   approximation described in Lyon (1997). The filters are normalized to
%   have a 0 dB attenuation at the center frequency (another way of
%   stating this is that their impulse responses will have unit area).
%
%   GAMMATONE(fc,fs,n) will do the same but choose a filter bandwidth
%   according to Glasberg and Moore (1990).
%
%   GAMMATONE(fc,fs) will do as above for a 4th order filter.
%
%   If fc is a vector, each entry of fc is considered as one center
%   frequency, and the corresponding coefficients are returned as row
%   vectors in the output.
%
%   The inpulse response of the gammatone filter is given by:
%
%        g(t) = a*t^(n-1)*cos(2*pi*fc*t)*exp(-2*pi*beta*t)
%
%   GAMMATONE takes the following flags at the end of the line of input
%   arguments:
%
%     'allpole'  Compute the all-pole approximation of Gammatone
%                filters by Lyon. This is the default
%
%     'classic'  Compute the classical mixed pole-zero approximation of 
%                gammatone filters.
%  
%     'complex'  Generate filter coefficients corresponding to a
%                complex valued filterbank modulated by exponential
%                functions. This is useful for envelope extration
%                purposes.
%
%     'real'     Generate real-valued filters.
%
%     'casualphase'  This makes the phase of each filter start at zero.
%                    This is the default.
%
%     'peakphase'    This makes the phase of each filter be zero when the
%                    envelope of the impulse response of the filter peaks.
%
%     'exppeakphase' Experimental version of peakphase. In addition to
%                    peakphase, the output signal is delayed such that the
%                    maxima of the corresponding Gammatone impulse
%                    responses are aligned. This option has been created to
%                    produce some of the figures from Patterson et al.
%                    (1987).
%
%     '0dBforall'    This scales the amplitude of each filter to have an
%                    impulse response of 0dB. This is default. 
%
%     '6dBperoctave' This scales the amplitude of each filter to have an
%                    impulse response of +/-6dB per octave. 
%  
%
%   To create the filter coefficients of a 1-erb spaced filter bank using
%   gammatone filters use the following construction:
%
%     [b,a] = gammatone(erbspacebw(flow,fhigh),fs,'complex');
%
%   To apply the (complex valued) filters to an input signal, use
%   FILTERBANKZ:
%
%     outsig = 2*real(ufilterbankz(b,a,insig));
%  
%   References:
%     A. Aertsen and P. Johannesma. Spectro-temporal receptive fields of
%     auditory neurons in the grassfrog. I. Characterization of tonal and
%     natural stimuli. Biol. Cybern, 38:223--234, 1980.
%     
%     R. Lyon. All pole models of auditory filtering. In E. R. Lewis, G. R.
%     Long, R. F. Lyon, P. M. Narins, C. R. Steele, and E. Hecht-Poinar,
%     editors, Diversity in auditory mechanics, pages 205--211. World
%     Scientific Publishing, Singapore, 1997.
%     
%     R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient
%     auditory filterbank based on the gammatone function. APU report, 2341,
%     1987.
%     
%
%   Url: http://amtoolbox.org/amt-1.4.0/doc/common/gammatone.php


%   #Author : Stephan Ewert
%   #Author : Peter L. Soendergaard (2011)
%   #Author : Christian Klemenschitz

% This file is licensed unter the GNU General Public License (GPL) either 
% version 3 of the license, or any later version as published by the Free Software 
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and 
% at <https://www.gnu.org/licenses/gpl-3.0.html>. 
% You can redistribute this file and/or modify it under the terms of the GPLv3. 
% This file is distributed without any warranty; without even the implied warranty 
% of merchantability or fitness for a particular purpose. 


% ------ Checking of input parameters ---------
  
  
% TODO: The phases of the filters all start at zero. This means that the
% real value of the impulse response of the filters does peak at the same
% time as the absolute value does. Include option to shift the phases so
% all filters have a distinct peak.

if nargin<2
  error('%s: Too few input arguments.',upper(mfilename));
end;

if ~isnumeric(fs) || ~isscalar(fs) || fs<=0
  error('%s: fs must be a positive scalar.',upper(mfilename));
end;

if ~isnumeric(fc) || ~isvector(fc) || any(fc<0) || any(fc>fs/2)
  error(['%s: fc must be a vector of positive values that are less than half ' ...
         'the sampling rate.'],upper(mfilename));
end;

definput.keyvals.n=4;
definput.keyvals.betamul=[];
definput.flags.real={'real','complex'};
definput.flags.phase={'causalphase','peakphase','exppeakphase'};
definput.flags.scale={'0dBforall','6dBperoctave'};
definput.flags.filtertype={'allpole','classic'};

[flags,keyvals,n,betamul]  = ltfatarghelper({'n','betamul'},definput,varargin);

if ~isnumeric(n) || ~isscalar(n) || n<=0 || fix(n)~=n
  error('%s: n must be a positive, integer scalar.',upper(mfilename));
end;

if isempty(betamul)
  % This formula comes from patterson1987efficient, but it is easier to
  % find in the Hohmann paper.
  betamul = (factorial(n-1))^2/(pi*factorial(2*n-2)*2^(-(2*n-2)));

else
  if ~isnumeric(betamul) || ~isscalar(betamul) || betamul<=0
    error('%s: beta must be a positive scalar.',upper(mfilename));
  end;
end;


% ------ Computation --------------------------

% ourbeta is used in order not to mask the beta function.  
ourbeta = betamul*audfiltbw(fc);

nchannels = length(fc);

if flags.do_allpole

  if flags.do_real

    warning(['FIXME: The real-valued allpole filters are not scaled ' ...
             'correctly.']);
    
    
    b=zeros(nchannels,1);
    a=zeros(nchannels,2*n+1);
        
    % This is when the function peaks.
    delay = 3./(2*pi*ourbeta);

    for ii = 1:nchannels
      % convert to radians
      theta = 2*pi*fc(ii)/fs;
      phi   = 2*pi*ourbeta(ii)/fs;

      alpha = -exp(-phi)*cos(theta);
      
      b1 = 2*alpha;
      b2 = exp(-2*phi);
      a0 = abs( (1+b1*cos(theta)-1i*b1*sin(theta)+b2*cos(2*theta)-1i*b2*sin(2*theta)) / (1+alpha*cos(theta)-1i*alpha*sin(theta))  );
      
      % Compute the position of the pole
      atilde = exp(-phi - 1i*theta);
      
      % Repeat the pole n times, and expand the polynomial
      a2=poly([atilde*ones(1,n),conj(atilde)*ones(1,n)]);


      if flags.do_6dBperoctave
        b2=a0^n *(fs/fc(ii)/n);
      else
        % Scale to get 0 dB attenuation, FIXME: Does not work, works only
        % for fc=fs/4
        b2=a0^n;
      end
      
      
      % Signal peaks at envelope maximum
      if flags.do_exppeakphase
        insig = [1 , zeros(1,8191)];  
        outsig = 2*real(ufilterbankz(b2,a2,insig));  
        envmax = find( abs(outsig) == max(abs(outsig)) );
        sigmax = find( outsig == max(outsig) );
        % Equation 18 from Hohmanns paper, but 45 deg phasedelayed.
        phi_delay = fc(ii)*(-2*pi-pi/4)*(envmax - sigmax)/fs;
        % Equation 19 from Hohmanns paper
        b2 = b2 * exp(1i *phi_delay);
      end
      
      if flags.do_peakphase
        b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
      end;
      
      % Place the result (a row vector) in the output matrices.
      b(ii,:)=b2;
      a(ii,:)=a2;
      
    end;
       
  end;      
  
  if flags.do_complex

    b=zeros(nchannels,1);
    a=zeros(nchannels,n+1);
        
    % This is when the function peaks.
    delay = 3./(2*pi*ourbeta);

    for ii = 1:nchannels
      % convert to radians
      theta = 2*pi*fc(ii)/fs;
      phi   = 2*pi*ourbeta(ii)/fs;
      
      % Compute the position of the pole
      % The commented line is the old code from the days of yore 
      atilde = exp(-2*pi*ourbeta(ii)/fs - 1i*2*pi*fc(ii)/fs);      
      %atilde = exp(-2*pi*ourbeta(ii)/fs + 1i*2*pi*fc(ii)/fs);
      
      % Repeat the pole n times, and expand the polynomial
      a2=poly(atilde*ones(1,n));
      
      btmp=1-exp(-2*pi*ourbeta(ii)/fs);
      
      % Amplitude scaling 
      if flags.do_6dBperoctave
         b2=btmp.^n *(fs/fc(ii)/n);
      else
         b2=btmp.^n;
      end
        
      
      % Signal peaks at envelope maximum
      if flags.do_exppeakphase
        insig = [1 , zeros(1,8191)];  
        outsig = 2*real(ufilterbankz(b2,a2,insig));  
        envmax = find( abs(outsig) == max(abs(outsig)) );
        sigmax = find( outsig == max(outsig) );
        % Equation 18 from Hohmanns paper, but 45 deg phasedelayed.
        phi_delay = fc(ii)*(-2*pi-pi/4)*(envmax - sigmax)/fs;
        % Equation 19 from Hohmanns paper
        b2 = b2 * exp(1i *phi_delay);
      end
      
      if flags.do_peakphase
        b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
      end;
      
      
      % Place the result (a row vector) in the output matrices.
      b(ii,:)=b2;
      a(ii,:)=a2;
      
      % Compute the z,p,k representation
      z=[];
      p=atilde*ones(1,n);
      k=1;
      
    end;
    
  end;
  
else

  if flags.do_real
    b=zeros(nchannels,n+1);
    a=zeros(nchannels,2*n+1);
        
    % This is when the function peaks.
    delay = 3./(2*pi*ourbeta);
    
    for ii = 1:nchannels      
      % convert to radians
      theta = 2*pi*fc(ii)/fs;
      phi   = 2*pi*ourbeta(ii)/fs;

      alpha = -exp(-phi)*cos(theta);
      
      b1 = 2*alpha;
      b2 = exp(-2*phi);
      a0 = abs( (1+b1*cos(theta)-1i*b1*sin(theta)+b2*cos(2*theta)-1i*b2*sin(2*theta)) / (1+alpha*cos(theta)-1i*alpha*sin(theta))  );
      
      % Compute the position of the pole
      atilde = exp(-phi-1i*theta);
      
      % Repeat the conjugate pair n times, and expand the polynomial
      a2 = poly([atilde*ones(1,n),conj(atilde)*ones(1,n)]);
      
      % Compute the position of the zero, just the real value of the pole
      btilde = real(atilde);
      
      % Repeat the zero n times, and expand the polynomial
      b2 = poly(btilde*ones(1,n));
      
      % Amplitude scaling
      if flags.do_6dBperoctave
        b2 = b2*(a0^n) *(fs/fc(ii)/n);
      else
        % Scale to get 0 dB attenuation
        b2=b2*(a0^n);
      end
      
      % Signal peaks at envelope maximum
      if flags.do_exppeakphase
        insig = [1 , zeros(1,8191)];  
        outsig = 2*real(ufilterbankz(b2,a2,insig));  
        envmax = find( abs(outsig) == max(abs(outsig)) );
        sigmax = find( outsig == max(outsig) );
        % Equation 18 from Hohmanns paper
        phi_delay = fc(ii)*(-2*pi)*(envmax - sigmax)/fs;
        % Equation 19 from Hohmanns paper
        b2 = b2 * exp(1i *phi_delay);
      end
      
      if flags.do_peakphase
        b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
      end;
      
      % Place the result (a row vector) in the output matrices.
      b(ii,:)=b2;
      a(ii,:)=a2;
      
    end;
    
    % Octave produces small imaginary values
    b=real(b);
    a=real(a);
    
  end;
  
  
  if flags.do_complex

    warning(['FIXME: The complex-valued mixed pole-zero filters are not scaled ' ...
             'correctly.']);

    b=zeros(nchannels,n+1);
    a=zeros(nchannels,n+1);
    
    
    % This is when the function peaks.
    delay = 3./(2*pi*ourbeta);

    for ii = 1:nchannels
      % convert to radians
      theta = 2*pi*fc(ii)/fs;
      phi   = 2*pi*ourbeta(ii)/fs;

      alpha = -exp(-phi)*cos(theta);
      b1 = 2*alpha;
      b2 = exp(-2*phi);
      a0 = abs( (1+b1*cos(theta)-1i*b1*sin(theta)+b2*cos(2*theta)-1i*b2*sin(2*theta)) / (1+alpha*cos(theta)-1i*alpha*sin(theta))  );
      
      % Compute the position of the pole
      % The line commented line below is the old code that returned
      % negative frequencies.
      %atilde = exp(-2*pi*ourbeta(ii)/fs - 1i*2*pi*fc(ii)/fs);
      atilde = exp(-2*pi*ourbeta(ii)/fs + 1i*2*pi*fc(ii)/fs);
      
      % Repeat the pole n times, and expand the polynomial
      a2=poly(atilde*ones(1,n));

      % Compute the position of the zero, just the real value of the pole
      btilde = real(atilde);
      
      % Repeat the zero n times, and expand the polynomial
      b2 = poly(btilde*ones(1,n));

      % Amplitude scaling
      if flags.do_6dBperoctave
        b2=b2*(a0^n) *(fs/fc(ii)/n);
      else
        % Scale to get 0 dB attenuation  
        b2=b2*(a0^n);
      end
      

      % Signal peaks at envelope maximum
      if flags.do_exppeakphase
        insig = [1 , zeros(1,8191)];  
        outsig = 2*real(ufilterbankz(b2,a2,insig));  
        envmax = find( abs(outsig) == max(abs(outsig)) );
        sigmax = find( outsig == max(outsig) );
        % Equation 18 from Hohmanns paper
        phi_delay = fc(ii)*(-2*pi)*(envmax - sigmax)/fs;
        % Equation 19 from Hohmanns paper
        b2 = b2 * exp(1i *phi_delay);
      end
      
      if flags.do_peakphase
        b2=b2*exp(2*pi*1i*fc(ii)*delay(ii));
      end;
      
      % Place the result (a row vector) in the output matrices.
      b(ii,:)=b2;
      a(ii,:)=a2;
  
    end;
    
  end;

end;