This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function [E] = li2020(target_direct,template_direct,target_brir,template_brir,varargin)
%LI2020 Sound externalization in reverberant spaces
%
% Usage: E = li2020(target_direct,template_direct,target_brir,template_brir)
%
% Input parameters:
% target : binaural impulse response or head-related impulse response
% of the target sound. Matrix dimensions: time x receiver.
% template : binaural impulse response or head-related impulse response
% of the template sound. Matrix dimensions: time x receiver.
% Note that the dimensions of target and template must be
% identical.
% target_brir : target binaural room impulse response
% template_brir : template binaural room impulse response
%
% Output parameters:
% E : predicted degree of externalization
%
%
% Examples:
%
% Anechoic signal (rendered with HRTFs or direct sound part of BRIRs):
%
% E = Li2020(tar_HRIR,tem_HRIR,[],[],'stim',stimulus,'fs',44100,'fsstim',44100,'flow',200, 'fhigh',16000, 'space',1);
%
% Reverberant signal (rendered with BRIRs with unkonwn direct sound part):
%
% E = Li2020([],[],tar_BRIR,tem_BRIR,'stim',stimulus,'fs',44100,'fsstim',44100,'flow',200, 'fhigh',16000, 'space',1);
%
% Reverberant signal (rendered with BRIRs with konwn direct part (HRTFs)):
%
% E = Li2020(tar_BRIR_dir,tem_BRIR_dir,tar_BRIR,tem_BRIR,'stim',stimulus,'fs',44100,'fsstim',44100,'flow',200, 'fhigh',16000, 'space',1);
%
% The implementation is based on baumgartner2021.m
% See also: exp_li2020 baumgartner2021 exp_baumgartner2021 data_li2020 sig_li2020
%
%
% References:
% S. Li, R. Baumgartner, and J. Peissig. Modeling perceived
% externalization of a static, lateral sound image. Acta Acustica, 4(5),
% 2021.
%
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/models/li2020.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Unknown
% #Requirements: M-Signal M-Image
% #Author: Song Li (2020), Institute of Communications Technology, Leibniz University of Hannover, Germany
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% Check input
definput.import={'baumgartner2014','baumgartner2014_pmv2ppp','localizationerror','amt_cache'};
definput.keyvals.JND = 1;
definput.keyvals.cueWeights = [2.5,1.7,0.9,2.8,0.6]; % weightings for the acoustic cues:
%[b_ILD, b_SG, b_w, b_ILD_TSD, b_lamda]
definput.keyvals.ILD_sd_ref = 2.1; % ILD_TSD_ref = ([2.2 2.0 2.2 2.0 2.2]);
definput.keyvals.ILD_sd_temp = 0.67;% ILD_TSD_temp = ([0.7254 0.6011 0.7415 0.6635 0.6432]); ILD TSDs in anechoic chamber
[flags,kv]=ltfatarghelper(...
{'fs','stim','space','do','flow','fhigh','fsstim','bwcoef'},definput,varargin);
if(isempty(target_direct)||isempty(template_direct))
% direct sound part is truncated from BRIRs
win_ramp_down = hann(round(0.001*kv.fs),'symmetric');
win_echo=[ones(round(0.0025*kv.fs),1);win_ramp_down(round(length(win_ramp_down)/2):end);zeros(length(target_brir)-round(0.0025*kv.fs)-round(length(win_ramp_down)/2-1)-2,1)];
target = permute(target_brir.*win_echo,[1,3,2]);
template = permute(template_brir.*win_echo,[1,3,2]);
else
% direct sound part and BRIRs are given
if(~isempty(target_brir)||~isempty(template_brir))
win_ramp_down = hann(round(0.01*kv.fs)-1,'symmetric');
win_ramp_up = hann(round(0.005*kv.fs)-1,'symmetric');
win_echo=[ones(round(0.0025*kv.fs),1); win_ramp_up(round(0.0025*kv.fs):end); zeros(round(0.01*kv.fs)-1-round(0.0025*kv.fs),1);...
win_ramp_down(1:round(0.005*kv.fs)*1);ones(length(target_brir)-round(0.01*kv.fs)-round(0.005*kv.fs)-round(0.0025*kv.fs),1)];
if (length(target_brir)>length(target_direct))
target_direct=padarray(target_direct,length(target_brir)-length(target_direct),0,'post');
else
target_brir=padarray(target_brir,length(target_direct)-length(target_brir),0,'post');
end
% remove additional echo
target = permute(target_direct.*win_echo,[1,3,2]);
template = permute(template_direct.*win_echo,[1,3,2]);
else
% only HRTFs are given, no BRIRs
target = permute(target_direct,[1,3,2]);
template = permute(template_direct,[1,3,2]);
end
end
%% DTF filtering
dimtar = size(target); % for lconv dim check
Nang = size(template,2);
if not(isempty(kv.stim))
target = lconv(target,kv.stim);
template = lconv(template,kv.stim);
target(length(kv.stim)+1:end,:) =[];
template(length(kv.stim)+1:end,:) =[];
end
if size(target,2) ~= dimtar(2)
target = reshape(target,[size(target,1),dimtar(2:end)]);
template = reshape(template,[size(template,1),dimtar(2:end)]);
end
%% Spectral Analysis
[tar.mp,fc] = baumgartner2014_spectralanalysis(target(1:length(target),:,:),'argimport',flags,kv);
[tem.mp,fc] = baumgartner2014_spectralanalysis(template(1:length(template),:,:),'argimport',flags,kv);
%
%% ILD cues
tar.ild = -diff(tar.mp,1,3); % ILD = left - right
tem.ild = -diff(tem.mp,1,3);
% target-template comparison -> ILD deviation
dILD = abs(tem.ild-repmat(tar.ild,1,Nang));
dILD(dILD < kv.JND) = 0; % limit minimum ILD difference according to JND
% overall normalized ILD deviation
ILD_deviation = mean(dILD./abs(tem.ild));
%% SG cue
% Spectral gradient extraction
nrep.tem = baumgartner2014_gradientextraction(tem.mp,fc,'both');
nrep.tar = baumgartner2014_gradientextraction(tar.mp,fc,'both');
dNrep = (repmat(nrep.tar,1,Nang)-nrep.tem);
dNrep(abs(dNrep) < kv.JND) = 0;
SG_deviation = mean(abs(dNrep))./mean((abs(nrep.tem)));
%% ILD TSD cue
% echo suppression
if(~isempty(target_brir)||~isempty(template_brir))
win_ramp_down = hann(round(0.01*kv.fs)-1,'symmetric');
win_ramp_up = hann(round(0.005*kv.fs)-1,'symmetric');
win_echo=[ones(round(0.0025*kv.fs),1); win_ramp_up(round(0.0025*kv.fs):end); zeros(round(0.01*kv.fs)-1-round(0.0025*kv.fs),1);...
win_ramp_down(1:round(0.005*kv.fs)*1);ones(length(target_brir)-round(0.01*kv.fs)-round(0.005*kv.fs)-round(0.0025*kv.fs),1)];
target = permute(target_brir.*win_echo,[1,3,2]);
template = permute(template_brir.*win_echo,[1,3,2]);
else
win_ramp_down = hann(round(0.001*kv.fs));
win_echo=[ones(round(0.0025*kv.fs),1);win_ramp_down(round(0.0005*kv.fs):end);zeros(length(target_direct)-round(0.0025*kv.fs)-round(0.0005*kv.fs)-1,1)];
target = permute(target_direct.*win_echo,[1,3,2]);
template = permute(template_direct.*win_echo,[1,3,2]);
end
dimtar = size(target); % for lconv dim check
if not(isempty(kv.stim))
target = lconv(target,kv.stim);
template = lconv(template,kv.stim);
target(length(kv.stim)+1:end,:) =[];
template(length(kv.stim)+1:end,:) =[];
end
% check that lconv preserved matrix dimensions
if size(target,2) ~= dimtar(2)
target = reshape(target,[size(target,1),dimtar(2:end)]);
template = reshape(template,[size(template,1),dimtar(2:end)]);
end
buf_frame = buffer(squeeze(target(:,1,1))', 0.02*kv.fs, 0.01*kv.fs, 'nodelay');
dim_len = size(buf_frame);
frameLength = dim_len(1);
Nframes = dim_len(2);
if Nframes == 0
Nframes = 1;
frameLength = size(target,1);
target = cat(1,target,zeros(frameLength-size(target,1),size(target,2),size(target,3)));
end
% window overlap
win_overlap = hann(round(0.02*kv.fs));
win_overlap = permute(win_overlap,[1,3,2]);
Nang = size(template,2);
for iframe = 1:Nframes-1
idt = (1:frameLength) + (iframe-1)*frameLength/2;
%% Spectral Analysis
tem =[];
tar =[];
[tar.mp,fc] = baumgartner2014_spectralanalysis(target(idt,:,:).*win_overlap,'argimport',flags,kv);
[tem.mp,fc] = baumgartner2014_spectralanalysis(template(idt,:,:).*win_overlap,'argimport',flags,kv);
%% ILDs
tar.ild = diff(tar.mp,1,3);
tem.ild = diff(tem.mp,1,3);
%% target-template comparison -> ILD deviation
ILD_temp(:,iframe) = tem.ild;
ILD_tar(:,iframe) = repmat(tar.ild,1,Nang);
end
range=size(ILD_temp);
ILD_low_num=1; ILD_high_num=range(2);
ILD_temp_std=(std(ILD_temp(:,ILD_low_num:ILD_high_num)'))';
ILD_tar_std=(std(ILD_tar(:,ILD_low_num:ILD_high_num)'))';
if (~isempty(target_brir)||~isempty(template_brir)) % reverberant condition
norm_ILD_std_mean = abs(mean(ILD_temp_std - ILD_tar_std)) / (mean (ILD_temp_std));
ILD_sd_temp_mean = mean (ILD_temp_std);
else
ILD_TSD_ref = ([2.2 2.0 2.2 2.0 2.2]); % ILD TSD reference
ILD_TSD_remaind = 0.0777; % Mal-adapted ILD TSD for anechoic conditions, which is used to compensate for the offset of the max. E-rating
norm_ILD_std_mean = abs(mean(ILD_temp_std - ILD_tar_std + ones(34,1)*ILD_TSD_remaind)) / (mean (ILD_TSD_ref));
ILD_sd_temp_mean =mean(ILD_temp_std + ones(34,1)*ILD_TSD_remaind);
end
%% Calculation of externalization ratings
b_ILD = kv.cueWeights(1);
b_SG = kv.cueWeights(2);
w = kv.cueWeights(3);
b_ILDTSD = kv.cueWeights(4);
b_lamda = kv.cueWeights(5);
%
ILD_sd_reference =kv.ILD_sd_ref;
if (~isempty(target_brir)||~isempty(template_brir)) % reverberant condition
ILD_sd_template =kv.ILD_sd_ref;
else
ILD_sd_template =kv.ILD_sd_temp;
end
gamma = 1- b_lamda * ILD_sd_template/ILD_sd_reference;
delta_xi = w * SG_deviation(:,:,1) + (1-w) * SG_deviation(:,:,2);
delta_m = gamma * ( b_ILD * ILD_deviation + b_SG * delta_xi) + b_ILDTSD * norm_ILD_std_mean;
E = 2 * exp(-delta_m) + 1;
end