This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function [itd,itd_max,itd_arg_max_phi,coef,fig] = pausch2022(featVec,varargin)
%PAUSCH2022 ITD prediction in the horizontal plane for listeners with hearing aids
%
% Usage: [itd, itd_max, itd_arg_max_phi, coef, fig] = pausch2022(featVec, varargin)
%
%
% Input parameters:
% featVec : Vector containing magnitudes in mm of the features used
% for the specific model implementation, see Pausch et al. (2022), Tab. 2
% and Sec. 3.4.
%
% - if 'type_stf'=='hrtf': [x1, x2, x3, x4, x5]
% - if 'type_stf'=={'hartf_front','hartf_rear'}: [x1, x2, x3, d13, d14]
%
% - x1: head width in mm [double]
% - x2: head height in mm [double]
% - x3: head depth in mm [double]
% - x4: pinna offset down in mm (only required if type_stf=='hrtf') [double]
% - x5: pinna offset back in mm (only required if type_stf=='hrtf') [double]
% - d13: HA-microphone offset up in mm (only required if type_stf=={'hartf_front','hartf_rear'}) [double]
% - d14: HA-microphone offset back in mm (only required if type_stf=={'hartf_front','hartf_rear'}) [double]
%
% Output parameters:
% itd : predicted ITDs in s for type_stf as per type_mod [double]
% itd_max : interaural-time-difference maximum, max{ITD} [double]
% itd_arg_max_phi : argument of the interaural-time-difference maximum,
% arg max_phi{ITD} [double]
% coef : model coefficients as estimated after applying the
% polynomial regression weights to the subset of
% individual features [double]
% fig : figure handle [matlab.ui.Figure]
%
%
% PAUSCH2022() contains a novel hybrid model to predict the interaural time
% differences (ITDs) in the horizontal plane for adults with normal hearing,
% listening via head-related transfer functions (HRTFs), or adults fitted
% with behind-the-ear hearing aids (HA), listening via hearing-aid-related
% transfer functions (HARTFs). It also contains two previous analythical
% ITD models: Kuhn (1977), Woodworth and Schlosberg (1954), and Woodworth and
% Schlosberg (1954) extended by Aaronson and Hartmann (2014). The ITD predictions
% in all models are based on invividual anthropometric features, or features
% describing the individual placement of the HAs, see Pausch et al. (2022)
% for further details.
%
% The type_mod flag may be used to select the ITD model for the ITD
% predictions (only required if type_stf=='weights'):
%
% 'pausch' hybrid ITD model by Pausch et al. (2022) (default)
% 'kuhn' analytic ITD model by Kuhn (1977)
% 'woodworth' analytic ITD model by Woodworth and Schlosberg (1954)
% 'woodworth_ext' analytic ITD model by Woodworth and Schlosberg (1954) extended
% by Aaronson and Hartmann (2014) (far-field assumption)
%
%
% Note: To evaluate type_mod=='woodworth_ext',
% additional key/value pairs for the features
% x5 (only if type_stf=={'hartf_front','hartf_rear'}),
% d9, d10, and Theta3 have to be specified.
%
% The type_stf flag may be used to choose between one of the following:
%
% 'hrtf' load individual HRTF datasets
% 'hartf_front' load invidual front HARTF datasets
% 'hartf_rear' load invidual rear HARTF datasets
%
% The plot flags may be:
%
% 'no_plot' No plot (default).
% 'plot' plot predicted ITDs over azi_min:azi_res:azi_max
% (default: false) [logical]
%
% Additional key/value pairs include:
%
% 'd9' HA-microphones-to-ear-canal offset in mm
% (default: []) [double]
% 'd10' HA-microphones-to-scalp offset in mm
% (default: []) [double]
% 'Theta3' frontal HA-microphones angle in deg
% (default: []) [double]
% 'azi_min' minimum evaluation angle of azimuth range in deg
% (default: 0) [double]
% 'azi_max' maximum evaluation angle of azimuth range in deg
% (default: 180) [double]
% 'azi_res' angular resolution of the evaluated azimuth range in deg
% (default: 2.5) [double]
% 'c' speed of sound in m/s (default: 343) [double]
%
%
%
% References:
% F. Pausch, S. Doma, and J. Fels. Hybrid multi-harmonic model for the
% prediction of interaural time differences in individual behind-the-ear
% hearing-aid-related transfer functions. Acta Acust., 6:34, 2022.
% [1]http ]
%
% G. F. Kuhn. Model for the interaural time differences in the azimuthal
% plane. The Journal of the Acoustical Society of America,
% 62(1):157--167, 1977. [2]arXiv | [3]http ]
%
% R. S. Woodworth and H. Schlosberg. Experimental psychology, Rev. ed.
% Holt, Oxford, England, 1954.
%
% N. L. Aaronson and W. M. Hartmann. Testing, correcting, and extending
% the Woodworth model for interaural time difference. The Journal of the
% Acoustical Society of America, 135(2):817--823, 2014. [4]arXiv |
% [5]http ]
%
% References
%
% 1. https://doi.org/10.1051/aacus/2022020
% 2. http://arxiv.org/abs/https://doi.org/10.1121/1.381498
% 3. https://doi.org/10.1121/1.381498
% 4. http://arxiv.org/abs/https://doi.org/10.1121/1.4861243
% 5. https://doi.org/10.1121/1.4861243
%
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/models/pausch2022.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Author: Florian Pausch (2022): integration in the AMT
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% [2] G. F. Kuhn, "Model for the interaural time differences in the azimuthal
% plane," The Journal of the Acoustical Society of America, vol. 62,
% no. 1, pp. 157–167, 1977. doi: 10.1121/1.381498.
% [3] R. S. Woodworth and H. Schlosberg, Experimental psychology, Rev. ed.
% Oxford, England: Holt, 1954.
% [4] N. L. Aaronson and W. M. Hartmann, "Testing, correcting, and extending
% the Woodworth model for interaural time difference," The Journal of
% the Acoustical Society of America, vol. 135, no. 2, pp. 817–823, 2014.
% doi: 10.1121/1.4861243.
%% Parse flags and keyvals
definput.import={'pausch2022'};
[flags,kv] = ltfatarghelper({'azi_min','azi_max','azi_res'}, definput, varargin);
if strcmp(flags.type_mod,'woodworth_ext')...
&& ( isempty(kv.d9) || isempty(kv.d10) || isempty(kv.Theta3) )
error('Please specify key/value pairs for ''d9'', ''d10'', and ''Theta3''.')
end
if (strcmp(flags.type_mod,'woodworth_ext') && ~strcmp(flags.type_stf,'hrtf'))...
&& ( isempty(kv.d9) || isempty(kv.d10) || isempty(kv.Theta3) || isempty(kv.x5) )
error('Please specify key/value pair for ''x5''.')
end
%% Load the polynomials regression weights
weights = data_pausch2022('weights',flags.type_mod,flags.type_stf);
fns = fieldnames(weights);
weights = weights.(fns{1});
%% Estimate the model coefficients by applying the polynomial regression weights
% on the feature subset magnitudes (featVec)
% construct vector/matrix alpha
M = length(featVec); % number of anthropometric features
P = (size(weights,2)-1)/M; % polynomial degree
temp_alpha = NaN(P,M);
for mdx=1:M
temp_alpha(:,mdx)=featVec(mdx).^(1:P);
end
alpha_mtx = [1, temp_alpha(:)'];
% estimate the model coefficients
coef = alpha_mtx*weights'; % effective head radius a_n = coef(1) in m
%% Evaluate the selected model
phi_vec = kv.azi_min:kv.azi_res:kv.azi_max;
phi_vec_rad = phi_vec*pi/180;
switch flags.type_mod
case 'kuhn'
itd = 3*coef/kv.c*sin(phi_vec_rad);
case {'woodworth','woodworth_ext'}
if strcmp(flags.type_stf,'hrtf')
Theta_E = 90 + atand( featVec(5) / sqrt((coef*1e3)^2-featVec(5)^2) );
if strcmp(flags.type_mod,'woodworth')
itd = eval_woodworth_ext(coef, kv.c, phi_vec);
else
itd = eval_woodworth_ext(coef, kv.c, phi_vec, Theta_E);
end
else
Theta_E = 90 + atand( kv.x5 / sqrt((coef*1e3)^2-kv.x5^2) );
zeta = kv.d9*sind(kv.Theta3);
Theta_HA = acosd( ((coef*1e3)^2 + (coef*1e3+kv.d10)^2 - zeta^2) / ...
(2*coef*1e3*(coef*1e3+kv.d10)) ) + Theta_E;
if strcmp(flags.type_mod,'woodworth')
itd = eval_woodworth_ext(coef, kv.c, phi_vec);
else
itd = eval_woodworth_ext(coef, kv.c, phi_vec, Theta_HA);
end
end
case 'pausch'
itd = coef(1)/kv.c*( coef(2).*sin(phi_vec_rad) + ...
coef(3).*sin(2*phi_vec_rad) + coef(4).*sin(3*phi_vec_rad) );
end
[itd_max,itd_arg_max_phi] = max(itd);
%% Optionally plot the predicted ITDs
if strcmp(flags.plot,'plot')
switch flags.type_mod
case 'kuhn'
col = [.4 .4 .4];
case {'woodworth','woodworth_ext'}
col = [0, 0, 0];
case 'pausch'
col = [0,84,159]/255;
end
lwidth = 1.5;
fsize = 12;
xpos_anno = 0.97;
ypos_anno = 0.94;
fig = figure;
plot(phi_vec,itd.*1e6,'color',col,'linewidth',lwidth)
grid on
title([flags.type_stf,', ',flags.type_mod],'interpreter','latex')
set(gca,'xlim',[phi_vec(1) phi_vec(end)],'ticklabelinterpreter','latex','fontsize',fsize)
set(gca,'xtick',phi_vec(1):30:phi_vec(end),'ytick',0:100:max(itd)*1e6)
axis square
box on
xlabel('Azimuth (deg)','fontsize',fsize,'interpreter','latex')
ylabel('ITD ($\mu$s)','fontsize',fsize,'interpreter','latex')
if strcmp(flags.type_mod,'woodworth_ext')
if strcmp(flags.type_stf,'hrtf')
text(xpos_anno,ypos_anno,['$\Theta_{\mathrm{E}}$\,=\,',...
num2str(round(Theta_E*10)/10),'$^\circ$'],'interpreter','latex',...
'fontsize',fsize,'units','normalized','horizontalalignment','right')
else
text(xpos_anno,ypos_anno,['$\Theta_{\mathrm{HA}}$\,=\,',...
num2str(round(Theta_HA*10)/10),'$^\circ$'],'interpreter','latex',...
'fontsize',fsize,'units','normalized','horizontalalignment','right')
end
end
end
end
%% ------------------------------------------------------------------------
% ---- INTERNAL FUNCTIONS ------------------------------------------------
% ------------------------------------------------------------------------
function itd = eval_woodworth_ext(a, c, phi_vec, Theta_E)
%EVAL_WOODWORTH_EXT - Function to estimate interaural time differences (ITDs)
% for directions in the horizontal plane based on the
% Woodworth model [1] extended by specified horizontal
% ear-canal angles Theta_E (or horizontal HA-microphones
% angle Theta_HA), assuming an infinite source distance [2].
% The model is evaluated for source directions phi_vec(phi_vec<=pi)
% in the horizontal plane.
%
% Usage : itd = eval_woodworth_ext(a, c, phi_vec) [1]
% itd = eval_woodworth_ext(a, c, phi_vec, Theta_E) [2]
%
% Input parameters (required):
%
% a : effective head radius (m) [double]
% c : speed of sound (m/s) [double]
% phi_vec : vector of azimuth angles <= 180 (deg) [double]
% Theta_E : horizontal ear-canal angle (deg) [double]
%
% Output parameters:
%
% itd : if no Theta_E is specified: predicted ITDs are based on the simple
% Woodworth model [1] (s) [double]
% if Theta_E is specified: predicted ITDs are based on the extended
% Woodworth model [2] (s) [double]
%
% [1] R. S. Woodworth, "Experimental Psychology," The Journal of Nervous and
% Mental Disease, vol. 91, no. 6, p. 811, 1940.
% [2] N. L. Aaronson and W. M. Hartmann, "Testing, correcting, and extending
% the Woodworth model for interaural time difference," The Journal of
% the Acoustical Society of America, vol. 135, no. 2, pp. 817–823, 2014.
% doi: 10.1121/1.4861243.
% Author: Florian Pausch, Institute for Hearing Technology and
% Acoustics, RWTH Aachen University
if nargin < 4
Theta_E = 90;
end
if any(phi_vec>180)
error('Azimuth angles exceeding $180^\circ$ in ''phi_vec'' are not supported by this model. Please re-specify.')
end
phi_vec1 = phi_vec(phi_vec<=90);
phi_vec1 = phi_vec1(:);
phi_vec2 = phi_vec(phi_vec>90);
phi_vec2 = phi_vec2(:);
phi_vec1_rad = deg2rad(phi_vec1);
phi_vec2_rad = deg2rad(phi_vec2);
if nargin < 4 || Theta_E==90 % simple Woodworth model
ITD_Woodworth1 = a/c * (sin(phi_vec1_rad) + phi_vec1_rad);
ITD_Woodworth2 = a/c * (pi - phi_vec2_rad + sin(phi_vec2_rad));
itd = [ITD_Woodworth1; ITD_Woodworth2];
else % extended Woodworth model
ITD_Woodworth_ext1 = NaN(numel(phi_vec1),1);
ITD_Woodworth_ext2 = NaN(numel(phi_vec2),1);
Theta_E_input = Theta_E;
if Theta_E_input ~= 90
if Theta_E_input<90
Theta_E = 90 + (90-Theta_E_input);
end
% regions for Eq. (b1)-(b5)
line1 = Theta_E - 90;
line2 = 180 - Theta_E;
line3 = 270 - Theta_E;
region_b1 = phi_vec1<line1 & phi_vec1<line2;
region_b2 = phi_vec1>=line1 & phi_vec1<line2;
region_b3a = phi_vec1>=line2 & phi_vec1>=line1;
region_b3b = phi_vec2<line3;
region_b4 = phi_vec2>=line3;
region_b5 = phi_vec1>=line2 & phi_vec1<line1;
Theta_E_rad = deg2rad(Theta_E);
% evaluate ITD for the different regions depending on the ear angles
ITD_Woodworth_ext1(region_b1) = 2*a/c*phi_vec1_rad(region_b1);
ITD_Woodworth_ext1(region_b2) = a/c*(-pi/2 + phi_vec1_rad(region_b2) + Theta_E_rad + cos(phi_vec1_rad(region_b2)-Theta_E_rad));
ITD_Woodworth_ext1(region_b3a) = a/c*(3*pi/2 - phi_vec1_rad(region_b3a) - Theta_E_rad + cos(phi_vec1_rad(region_b3a)-Theta_E_rad));
ITD_Woodworth_ext2(region_b3b) = a/c*(3*pi/2 - phi_vec2_rad(region_b3b) - Theta_E_rad + cos(phi_vec2_rad(region_b3b)-Theta_E_rad));
ITD_Woodworth_ext2(region_b4) = a/c*(cos(phi_vec2_rad(region_b4)-Theta_E_rad) - cos(phi_vec2_rad(region_b4)+Theta_E_rad));
ITD_Woodworth_ext1(region_b5) = 2*a/c*(pi - Theta_E_rad);
if Theta_E_input>90
itd = [ITD_Woodworth_ext1; ITD_Woodworth_ext2];
else % Theta_E_input<90
itd = flipud([ITD_Woodworth_ext1; ITD_Woodworth_ext2]);
end
end
end
end