function [Mixsigmin, Mixsigmax, ECparams4Opt] = hauth2020_fftcon(MixsigL,MixsigR,fc,fs,sigmadelta0,Delta0,bin_inaccuracy)
%HAUTH2020_FFTCON Cancellation process
%
% Usage:
% [Mixsigmin, Mixsigmax, ECparams4Opt] = hauth2020_fftcon(MixsigL,MixsigR,fc,fs,sigmadelta0,Delta0,bin_inaccuracy)
%
% Input parameters:
% MixsigL : Left ear signal
% MixsigR : Right ear signal
% fc : center frequency of frequency channel
% fs : sampling frequency
% sigmadelta0 : term to calculate binaural processing inaccuracy
% Delta0 : term to calculate binaural processing inaccuracy
% bin_inaccuracy : flag indicating the use of (1) binaural processing
% inaccuracies or (0) assuming binaural processing to be deterministic
%
% Output parameters:
% Mixsigmin : EC processed signal using the minimization strategy
% Mixsigmax : EC processed signal using the maximization strategy
% ECparams4Opt : Structure containing EC parameters (Delay and Uncertainties)
%
% First, left and right ear signal are transformed to
% frequency domain in order to calculate the cross power spectral density.
% By calculating the angle of the CPSD and, the frequency dependent ITD can
% be obtained by dividing the angle by the angular frequency. In order to
% obtain the final ITD value for the frequency band, an integration window
% derived from the absolute value of the CPSD is applied.
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/hauth2020_fftcon.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #Requirements: MATLAB M-Signal
% #Author: Christopher F. Hauth (2020)
% #Author: Dr. Thomas Brand (2020)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
% caluclate number of fft points for computation of correlation
lenSig = length(MixsigL);
fftpoints = (length(MixsigL)+length(MixsigR));
% compute fft representation
MixsigLFFT = fft(MixsigL,fftpoints);
MixsigRFFT = fft(MixsigR,fftpoints);
%% Frequency domain fractionaly delay estimation
% Apply ERB window in the frequency domain
ERB = 24.7.*(4.37.*fc./1000 + 1);
% compute CrossPowerSpectralDensity
PHY_LR = MixsigLFFT.*conj(MixsigRFFT);
Frequency = linspace(0, 44100, fftpoints);
PHY_phase = angle(PHY_LR);
% Make sure phase is consistent in case of pi (+-pi)
PHY_phase_unwrapped = PHY_phase;
PHY_phase_unwrapped(PHY_phase<0) = PHY_phase(PHY_phase<0)+2*pi;
% Convert IPD to ITD
PHY_time = PHY_phase./(2.*pi.*Frequency');
PHY_time_unwrapped = PHY_phase_unwrapped./(2.*pi.*Frequency');
% Normalize
PHY_abs_norm = abs(PHY_LR)./max(abs(PHY_LR));
window = find(Frequency>=fc-ERB/2&Frequency<=fc+ERB/2);
% compute standard deviation of tau
EC_std = std(PHY_time(window));
% do the same for unwrapped phase:
EC_std_unwrapped = std(PHY_time_unwrapped(window));
% compute standard deviation of the delay processign inaccuracy
if EC_std <= EC_std_unwrapped
EC_tau = sum(PHY_time(window).*(PHY_abs_norm(window)/sum(PHY_abs_norm(window))));
else
EC_tau = sum(PHY_time_unwrapped(window).*(PHY_abs_norm(window)/sum(PHY_abs_norm(window)))); %EC_tau_unwrapped
end
std_min_frac = sigmadelta0.*(1+(abs(EC_tau)./(Delta0)));
% compute a set of 2 Gaussian variables for each ear
errorLR = 1.*std_min_frac.*randn(2,1);
% Save EC params in a struct. It will also be used to EC process optional
% signals
ECparams4Opt.errorLR = errorLR;
ECparams4Opt.fftpoints = fftpoints;
ECparams4Opt.EC_tau = EC_tau;
% apply EC mechanism in the frequency domain:
[Mixsigmin, Mixsigmax] =local_ecfftprocess(MixsigLFFT,MixsigRFFT,EC_tau,errorLR,fs,fftpoints,lenSig,bin_inaccuracy);
end
function [Mixsigmin, Mixsigmax] = local_ecfftprocess(MixsigLFFT,MixsigRFFT,EC_tau,errorLR,fs,fftpoints,orig_len,bin_inaccuracy)
% Usage: [Mixsigmin Mixsigmax] = EC_FFTprocess(MixsigLFFT,MixsigRFFT,EC_tau,errorLR,fs,fftpoints,orig_len,bin_inaccuracy)
% This function applies the Equalization-Cancellation process in the frequency
% domain.
% The Equalization is applied two both ears symmetrically.
% Input:
% MixsigLFFT - FFT representation of left ear signal
% MixsigRFFT - FFT representation of right ear signal
% EC_tau - Delay for the EC process
% errorLR - Pair of binaural processing inaccuracies
% fs - sampling frequency
% fftpoints - fftpoints in the fft
% orig_len - original length of the signal
% bin_inaccuracy - flag indicating the use of (1) binaural processing
% inaccuracies or (0) assuming binaural processing to be deterministic
% Output:
% Mixsigmin - EC processed signal applying minimization strategy
% Mixsigmax - EC processed signal applying maximization strategy
% Authors: Christopher Hauth <christopher.hauth@uni-oldenburg.de>
% Dr. Thomas Brand <thomas.brand@uni-oldenburg.de>
% Date: 22.10 2020
% Version: 1.0.
f = linspace(0,fs/2,floor(fftpoints./2+1))';
% invert frequency vector for complex conjugate
f_inv = f(end-1:-1:2);
% frequency vector in rad
omega = 2.*pi*[f;f_inv];
% copy signals to generate buffer for processed signals
FFTMixsigLeq = MixsigLFFT;
FFTMixsigReq = MixsigRFFT;
%--------------------------------------------------------------------------
%% Apply Equalization Mechanism %%
% calculate phase factor for left and right ear with a set of gaussian
% distributed RVs as binaural processing inaccuracies
if bin_inaccuracy
for kk = 1:size(errorLR,2)
phaseL(:,kk) = exp(-1j.*omega(1:(end/2)+1).*(EC_tau./2 + errorLR(1,kk)));
phaseR(:,kk) = exp(+1j.*omega(1:(end/2)+1).*(EC_tau./2 + errorLR(2,kk)));
% complex conjugate
phaseLcc(:,kk) = exp(+1j.*omega((end/2)+2:end).*(EC_tau./2 + errorLR(1,kk)));
phaseRcc(:,kk) = exp(-1j.*omega((end/2)+2:end).*(EC_tau./2 + errorLR(2,kk)));
end
% take the mean over all phase terms to obtain averaged processing
% binaural processing inaccuracy
phaseL = mean(phaseL,2);
phaseLcc = mean(phaseLcc,2);
phaseR = mean(phaseR,2);
phaseRcc = mean(phaseRcc,2);
else
phaseL = exp(-1j.*omega(1:(end/2)+1).*(EC_tau./2));
phaseR = exp(+1j.*omega(1:(end/2)+1).*(EC_tau./2));
% complex conjugate
phaseLcc = exp(+1j.*omega((end/2)+2:end).*(EC_tau./2));
phaseRcc = exp(-1j.*omega((end/2)+2:end).*(EC_tau./2));
end
% equalize phases of left and right ear signals
% Left ear
FFTMixsigLeq(1:(end/2)+1) = FFTMixsigLeq(1:(end/2)+1).*phaseL;
FFTMixsigLeq((end/2)+2:end)= FFTMixsigLeq((end/2)+2:end).*phaseLcc;
% Right ear
FFTMixsigReq(1:(end/2)+1) = FFTMixsigReq(1:(end/2)+1).*phaseR;
FFTMixsigReq((end/2)+2:end)= FFTMixsigReq((end/2)+2:end).*phaseRcc;
%--------------------------------------------------------------------------
%% Apply Cancellation %%
FFTMixsigMin = FFTMixsigLeq - FFTMixsigReq; % destructive interference
FFTMixsigMax = FFTMixsigLeq + FFTMixsigReq; % constructive interference
%--------------------------------------------------------------------------
%% Apply IFFT and cut signals
% Level minimization
Mixsigmin = real(ifft(FFTMixsigMin));
Mixsigmin = Mixsigmin(1:orig_len);
% Level maximization
Mixsigmax = real(ifft(FFTMixsigMax));
Mixsigmax = Mixsigmax(1:orig_len);
end
%--------------------Licence ---------------------------------------------
% Copyright (c) <2020> Christopher F. Hauth
% Dept. Medical Physics and Acoustics
% Carl von Ossietzky University Oldenburg
% Permission is hereby granted, free of charge, to any person obtaining
% a copy of this software and associated documentation files
% (the "Software"), to deal in the Software without restriction, including
% without limitation the rights to use, copy, modify, merge, publish,
% distribute, sublicense, and/or sell copies of the Software, and to
% permit persons to whom the Software is furnished to do so, subject
% to the following conditions:
% The above copyright notice and this permission notice shall be included
% in all copies or substantial portions of the Software.
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
% EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
% OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
% IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
% CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
% TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
% SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
% END OF FILE