function [y_est] = llado2022_evaluatenn(x_test,NN_pretrained)
%LLADO2022_EVALUATENN evaluate the neural network
% Usage: [y_est] = llado2022_evaluatenn(x_test,NN_pretrained)
%
% Input parameters:
% x_test : Features of the test subset
% NN_pretrained : Pretrained network
% hiddenLayerSize : Size of the hidden layer
%
% Output parameters:
% y_est : Estimated data
%
% LLADO2022_EVALUATENN gives the estimation uncertainty of the neural
% network
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/llado2022_evaluatenn.php
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB M - Communication Systems
% #Author: Pedro Llado (2022)
% #Author: Petteri Hyvärinen (2022)
% #Author: Ville Pulkki (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
for iter = 1:NN_pretrained.nIter
net_dir = NN_pretrained.preTrained_dir(1,end,iter).net;
net_uncertainty = NN_pretrained.preTrained_uncertainty(1,end,iter).net;
y_hat_dir(iter,:) = net_dir(x_test);
y_hat_uncertainty(iter,:) = net_uncertainty(x_test);
end
clear clipPos;
clipPos = find(y_hat_dir < -90);
y_hat_dir(clipPos) = -90;
clear clipPos;
clipPos = find(y_hat_dir > 90);
y_hat_dir(clipPos) = 90;
y_est(:,1) = mean(y_hat_dir);
y_est(:,2) = mean(y_hat_uncertainty);
end