This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.
function [activityMap, colorGains, colorMtrx, levels] = takanen2013_formbinauralactivitymap(thetaL,thetaR,eL,eR,fs,fc,printFigs,printMap)
%TAKANEN2013_FORMBINAURALACTIVITYMAP Steer the what cues on a topographic map using the where cues
% Usage: [activityMap colorGains colorMtrx levels] = takanen2013_formbinauralactivitymap(thetaL,thetaR,eL,eR,fs,fc,printFigs);
%
% Input parameters:
% thetaL : "where" cue of the left hemisphere
% thetaR : "where" cue of the right hemisphere
% eL : "what" cue of the left hemisphere
% eR : "what" cue of the right hemisphere
% fs : sampling rate
% fc : characteristic frequencies
% printFigs : boolean value describing whether the computations in
% contralateralcomparison are illustrated or not
% printMap : optional boolean value describing whether the
% resulting activity map is plotted (by default) or not.
%
% Output parameters:
% activityMap : Matrix that describes in which of the six frequency
% ranges there is activation on a given location on
% the map at a specific time instant
% colorGains : Matrix that describes the signal level dependent
% gains for the different activation values on the
% activityMap
% colorMtrx : RGB color codes employed for the different frequency
% ranges on the binaural activity map
% levels : vector specifying the left/right location
%
% This function takes as input the where cue values of the left and right
% hemisphere and the respective what cues. The principle is to create an
% image for each what cues on the map at locations specified by the where
% cues, and to enhance the contrast between the hemispheres with a method
% denoted as contralateral comparison. In each position of the map, there
% is thought to exist several frequency-selective neurons. For
% illustrative purposes, the frequencies are divided into six frequency
% areas and different colors are used for each of them. In the resulting
% map, different colors indicate different frequencies, brightness of the
% colors indicate the energy and the location indicates the direction of
% the activity.
%
% See also: takanen2013, takanen2013_contracomparison
%
% References:
% M. Takanen, O. Santala, and V. Pulkki. Visualization of functional
% count-comparison-based binaural auditory model output. Hearing
% research, 309:147--163, 2014. PMID: 24513586.
%
%
% Url: http://amtoolbox.org/amt-1.4.0/doc/modelstages/takanen2013_formbinauralactivitymap.php
% #StatusDoc: Perfect
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB M-Signal
% #Author: Marko Takanen (2013)
% #Author: Olli Santala
% #Author: Ville Pulkki
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
%% ------ Set parameter values --------------------------------------------
levels = -90:10:90;
%the frequency ranges for different color codes are specified as presented
%in the article******* as 124 Hz, 440 Hz, 1050 Hz, 2.20 kHz 4.40 kHz, 8.7
%kHz and 15.3 kHz
ranges = [1 find(fc>=440,1,'first') find(fc>=1050,1,'first') find(fc>=2200,1,'first') ...
find(fc>=4400,1,'first') find(fc>8700,1,'first') length(fc)+1];
%the corresponding colors for each frequency area are specified here
colorMtrx = zeros(length(ranges),3);
colorMtrx(1,:) = [1 1 1]; % black
colorMtrx(7,:) = [0 0.5 1];% blueish
colorMtrx(2,:) = [1 0 1];% magenta
colorMtrx(4,:) = [1 0 0]; %red
colorMtrx(3,:) = [1 1 0]; %yellow
colorMtrx(6,:) = [0 1 0]; %green
colorMtrx(5,:) = [0 1 1]; %cyan
dims = size(thetaR);
%the output variables are initialized here
nXBins= length(levels)*(size(colorMtrx,1)-1);
activityMap = zeros(dims(1),nXBins);
colorGains = zeros(dims(1),nXBins);
%% ------ Computation -----------------------------------------------------
%the what cues (i.e. the spectral information) is derived from the
%periphery model outputs using the max-outputs for a pink noise at 60 dB
x=amt_load('takanen2013','periphenergyaverages.mat');
averageEnerg=x.averageEnerg;
eR = eR./(ones(dims(1),1)*averageEnerg);
eL = eL./(ones(dims(1),1)*averageEnerg);
max_val = max(eL(:));
scaleVal = max(1,max_val/5);
eL = eL./(scaleVal);
max_val = max(eR(:));
scaleVal = max(1,max_val/5);
eR = eR./(scaleVal);
bands = 1:dims(2);
for bandInd =1:(length(ranges)-1)
temp = (bands>=ranges(bandInd)).*(bands<ranges(bandInd+1));
%if desired, the operations involved in *contralateralcomparison*
%procedure are illustrated on one frequency area
if bandInd==2
[mapTemp, gainTemp] = takanen2013_contracomparison(thetaL(:,temp==1),thetaR(:,temp==1),levels,eL(:,temp==1),eR(:,temp==1),fs,printFigs);
else
[mapTemp, gainTemp] = takanen2013_contracomparison(thetaL(:,temp==1),thetaR(:,temp==1),levels,eL(:,temp==1),eR(:,temp==1),fs,0);
end
activityMap(:,bandInd:length(ranges)-1:nXBins) = mapTemp*bandInd;
colorGains(:,bandInd:length(ranges)-1:nXBins) = gainTemp;
end
clear thetaL thetaR eL eR gainTemp mapTemp
%An image of the activation is plotted
colorGains(colorGains>1) =1;
%a 3-D matrix is created to store the rgb-values of the figure for
%each time and activation instant
if(printMap==1)
outputMtrx = single(zeros(dims(1),nXBins,3));
for colorInd=1:size(colorMtrx,1)
temp = find((activityMap==(colorInd-1))==1);
outputMtrx(temp) = colorGains(temp)*colorMtrx(colorInd,1);
outputMtrx(temp+dims(1)*nXBins) = colorGains(temp)*colorMtrx(colorInd,2);
outputMtrx(temp+2*dims(1)*nXBins) = colorGains(temp)*colorMtrx(colorInd,3);
end
figure;
imagesc(levels./90,(dims(1)-1:-20:0)/fs,outputMtrx(1:20:end,:,:));
set(gca,'Xtick', -.95:0.38:.95);
set(gca,'XtickLabel',-1:0.4:1);
xlabel('Activation location');
ylabel('Time [s]');
end