THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated AMT version (1.4.0). Click here for the most recent page.

View the help

Go to function

PLOT_BAUMGARTNER2014_LIKELISTAT - plots likelihood statistics according to Langendijk et al. (2002)

Program code:

function plot_baumgartner2014_likelistat(la,le,ci,lr)
%PLOT_BAUMGARTNER2014_LIKELISTAT plots likelihood statistics according to Langendijk et al. (2002)
%
%   Usage:           plot_baumgartner2014_likelistat(la,le,ci)
%                    plot_baumgartner2014_likelistat(la,le,ci,lr)
%                    plot_baumgartner2014_likelistat(la,le,ci,lr)
%
%   Input parameters:
%     la:          actual likelihood
%     le:          expected likelihood
%     ci:          confidence interval for expected likelihood
%     lr:          reference likelihoods
%
%   See also: baumgartner2014
%
%   Url: http://amtoolbox.org/amt-1.4.0/doc/plot/plot_baumgartner2014_likelistat.php


%   #StatusDoc: Perfect
%   #StatusCode: Perfect
%   #Verification: Verified
%   #Requirements: SOFA CircStat M-SIGNAL M-Stats O-Statistics
%   #Author: Robert Baumgartner (2014), Acoustics Research Institute, Vienna, Austria

% This file is licensed unter the GNU General Public License (GPL) either 
% version 3 of the license, or any later version as published by the Free Software 
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and 
% at <https://www.gnu.org/licenses/gpl-3.0.html>. 
% You can redistribute this file and/or modify it under the terms of the GPLv3. 
% This file is distributed without any warranty; without even the implied warranty 
% of merchantability or fitness for a particular purpose. 


% if size(lr,1)==4
%     lr = mean(lr,2);
% else
%     lr = mean(lr,1);
% end


h=bar(la);
set(gca,'XTick',1:length(la))
set(gca,'YLim',[min(lr(:,1)) max(lr(:,4))-0.01],'Layer','top')
set(gca,'Box','on')
set(h,'FaceColor','white','BarWidth',0.6)

hold on
errorbar(le,(ci(:,1)-ci(:,2))/2,'k.');

% leg = legend('Actual likelihood','Expected likelihood');

% for ii = 1:size(lr,2)
%   plot([0,length(la)+1],[lr(:,ii),lr(:,ii)],'k:')
% end

ylabel({'Normalized';'Log-Likelihood'})
xlabel('Condition')
hold off



% hold on
% for ii = 1:length(lr)
%     plot(0.5:length(la)+0.5,lr(ii)*ones(length(la)+1,1),'k:')
% end
% 
% if length(la) == 1
%   h=bar(la);
%   set(gca,'Box','on')
%   set(h,'FaceColor','white','BarWidth',0.5)
% else % Jackknife
%   mla = mean(la);
%   stdla = std(la);
%   errorbar(mla,stdla,'k.');
% end
%   
% set(gca,'XTick',1:length(la))
% if lr(4)==1    % normalized likelihoods
%     set(gca,'YLim',[0.5 1.1],'Layer','top')
%     ylabel('Normalized Log-Likelihood')
% else
%     set(gca,'YLim',[200 550],'Layer','top')
%     ylabel('Log-Likelihood')
%     xlabel('Condition')
% end
% errorbar(le,(ci(:,1)-ci(:,2))/2,'k.');
% hold off

end