This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
[y_est] = llado2022(ir); [y_est] = llado2022(ir, stim); [y_est] = llado2022(ir, stim, fs); [y_est] = llado2022(ir, stim, fs, NN_pretrained);
ir | Impulse response according to the following matrix dimensions [direction x time x channel/ear] |
y_est | Estimated values for perceived direction and position uncertainty. |
LLADO2022(...) is a model for estimating the effect of head-worn devices on frontal horizontal localisation. A neural network (NN) was trained using binaural features of a dummy head wearing different head-worn devices to predict the data from a perceptual test using the same devices. If you want to use your own data, please find in the script 'demo_llado2022' the whole procedure.
Optional input parameters:
'stim' | stimulus. If empty, 250 ms of pink noise |
'fs' | (DEFAULT = 48000) |
'NN_pretrained' | if empty, a pretrained NN is used. |
To see details or to train a new NN, please see the script demo_llado2022
Lladó, Pedro, Hyvärinen, Petteri, and Pulkki, Ville. Auditory model-based estimation of the effect of head-worn devices on frontal horizontal localisation. Acta Acust., 6:1, 2022. [ DOI | http ]