This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function [CF, decim_naps, naps, BM, ohc, agc, ihc_potential] = lyon2011(input_waves, CF)
%LYON2011 Cascade of asymmetric resonators with fast-acting compression (CARFAC) model
% Usage: [CF, decim_naps, naps, BM, ohc, agc] = lyon2011(input_waves,CF);
%
%
% Input parameters:
% input_waves : input_waves is a column vector if there's just one
% audio channel; more generally, it has a row per
% time sample, a column per audio channel. The
% input_waves are assumed to be sampled at the
% same rate as the CARFAC model is designed for.
% A resampling may be needed before calling this.
% CF : The CF struct holds the CARFAC design and state.
%
% Output parameters:
% CF : The CF struct holds the CARFAC design and
% state; if you want to break the input up into
% segments, you need to use the updated CF
% to keep the state between segments.
% decim_naps : decim_naps is like naps but time-decimated by
% the int CF.seglen (defaults to about 20 ms long).
% naps : naps (neural activity patterns) has a row per
% time sample, a column per filterbank channel,
% and a layer per audio channel if n_ears > 1.
% BM : BM is basilar membrane motion (filter outputs
% before detection).
% ohc : optional extra output for diagnosing internals.
% agc : optional extra outputs for diagnosing internals.
% ihc_potential : optional extra output for the IHC potential equivalent.
%
% LYON2011 runs the CARFAC model. That is, it filters a 1 or more channel
% sound input to make one or more neural activity patterns (naps). This
% file is part of an implementation of Lyon's cochlear model:
% "Cascade of Asymmetric Resonators with Fast-Acting Compression"
%
% License
% --------
%
% This model is licensed under the Apache License Version 2.0. Further usage details
% are provided in the in the AMT directory "licences".
%
%
% See also: data_lyon2011 demo_lyon2011_impulseresponses demo_lyon2011
% demo_lyon2011_compressivefunctions lyon2011_init
% lyon2011_agcstep lyon2011_carstep
% lyon2011_ihcstep lyon2011_crosscouple lyon2011_detect
% lyon2011_stageg lyon2011_closeagcloop
% lyon2011_spatialsmooth
%
% References:
% R. F. Lyon. Cascades of two-pole–two-zero asymmetric resonators are
% good models of peripheral auditory function. J. Acoust. Soc. Am.,
% 130(6), 2011.
%
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/models/lyon2011.php
% #StatusDoc: Good
% #StatusCode: Good
% #Verification: Unknown
% #License: Apache2
% #Author: Richard F. Lyon (2013): original implementation (https://github.com/google/carfac)
% #Author: Amin Saremi (2016): adaptations for the AMT
% #Author: Clara Hollomey (2021): integration in the AMT 1.0
% #Author: Richard Lyon (2022): bug fixes for AMT
% #Author: Mihajlo Velimirovic (2022): implementation of the option ihc_potential
% This file is licensed unter the Apache License Version 2.0 which details can
% be found in the AMT directory "licences" and at
% <http://www.apache.org/licenses/LICENSE-2.0>.
% You must not use this file except in compliance with the Apache License
% Version 2.0. Unless required by applicable law or agreed to in writing, this
% file is distributed on an "as is" basis, without warranties or conditions
% of any kind, either express or implied.
% Probably a better scale for CARFAC; from 104 dB SPL at FS to 94.
input_waves = 0.316 * input_waves;
[n_samp, n_ears] = size(input_waves);
n_ch = CF.n_ch;
if n_ears ~= CF.n_ears
error('bad number of input_waves channels passed to CARFAC_Run')
end
if ~isfield(CF, 'seglen') % If no seglen specified...
CF.seglen = round(CF.fs/50); % anything should work; this is 20 ms.
end
seglen = CF.seglen;
n_segs = ceil(n_samp / seglen);
if nargout > 1
% make decimated detect output:
decim_naps = zeros(n_segs, CF.n_ch, CF.n_ears);
else
decim_naps = [];
end
if nargout > 2
% make decimated detect output:
naps = zeros(n_samp, CF.n_ch, CF.n_ears);
else
naps = [];
end
if nargout > 3
BM = zeros(n_samp, n_ch, n_ears);
else
BM = [];
end
if nargout > 4
ohc = zeros(n_samp, n_ch, n_ears);
else
ohc = [];
end
if nargout > 5
agc = zeros(n_samp, n_ch, n_ears);
else
agc = [];
end
if nargout > 6
for ear = 1:n_ears
if ~isfield(CF.ears(ear).IHC_state, 'cap1_voltage')
error('To get the IHC potential, please use the two-cap version.')
end
end
ihc_potential = zeros(n_samp, n_ch, n_ears);
else
ihc_potential = [];
end
for seg_num = 1:n_segs
if seg_num == n_segs
% The last segement may be short of seglen, but do it anyway:
k_range = (seglen*(seg_num - 1) + 1):n_samp;
else
k_range = seglen*(seg_num - 1) + (1:seglen);
end
% Process a segment to get a slice of decim_naps, and plot AGC state:
if ~isempty(ihc_potential)
[seg_naps, CF, seg_BM, seg_ohc, seg_agc, seg_ihc_potential] = CARFAC_Run_Segment(...
CF, input_waves(k_range, :));
elseif ~isempty(BM)
[seg_naps, CF, seg_BM, seg_ohc, seg_agc] = CARFAC_Run_Segment(...
CF, input_waves(k_range, :));
else
[seg_naps, CF] = CARFAC_Run_Segment(CF, input_waves(k_range, :));
end
if ~isempty(BM)
for ear = 1:n_ears
% Accumulate segment BM to make full BM
BM(k_range, :, ear) = seg_BM(:, :, ear);
end
end
if ~isempty(naps)
for ear = 1:n_ears
% Accumulate segment naps to make full naps
naps(k_range, :, ear) = seg_naps(:, :, ear);
end
end
if ~isempty(ohc)
for ear = 1:n_ears
% Accumulate segment naps to make full naps
ohc(k_range, :, ear) = seg_ohc(:, :, ear);
end
end
if ~isempty(agc)
for ear = 1:n_ears
% Accumulate segment naps to make full naps
agc(k_range, :, ear) = seg_agc(:, :, ear);
end
end
if ~isempty(decim_naps)
for ear = 1:n_ears
decim_naps(seg_num, :, ear) = CF.ears(ear).IHC_state.ihc_accum / ...
seglen;
CF.ears(ear).IHC_state.ihc_accum = zeros(n_ch,1);
end
end
if ~isempty(ihc_potential)
for ear = 1:n_ears
% Accumulate segment IHC capacitor voltage to make full IHC vector
ihc_potential(k_range, :, ear) = seg_ihc_potential(:, :, ear);
end
end
end % segment loop
return
function [naps, CF, BM, seg_ohc, seg_agc, seg_ihc_potential] = CARFAC_Run_Segment(...
CF, input_waves)
% function [naps, CF, BM, seg_ohc, seg_agc, seg_ihc_potential] = CARFAC_Run_Segment(...
% CF, input_waves)
%
% This function runs the CARFAC; that is, filters a 1 or more channel
% sound input segment to make one or more neural activity patterns (naps);
% it can be called multiple times for successive segments of any length,
% as long as the returned CF with modified state is passed back in each
% time.
%
% input_waves is a column vector if there's just one audio channel;
% more generally, it has a row per time sample, a column per audio channel.
%
% naps has a row per time sample, a column per filterbank channel, and
% a layer per audio channel if more than 1.
% BM is basilar membrane motion (filter outputs before detection).
%
% the input_waves are assumed to be sampled at the same rate as the
% CARFAC is designed for; a resampling may be needed before calling this.
%
% The function works as an outer iteration on time, updating all the
% filters and AGC states concurrently, so that the different channels can
% interact easily. The inner loops are over filterbank channels, and
% this level should be kept efficient.
%
% seg_ohc seg_agc are optional extra outputs useful for seeing what the
% ohc nonlinearity and agc are doing; both in terms of extra damping.
%
% seg_ihc_potential is also optional, and is used for getting the internal IHC
% state, comparable to the IHC potential.
if nargout > 2
do_BM = 1;
else
do_BM = 0;
end
[n_samp, n_ears] = size(input_waves);
if n_ears ~= CF.n_ears
error('bad number of input_waves channels passed to CARFAC_Run_Segment')
end
if ~isfield(CF, 'open_loop') % Find open_loop in CF or default it.
CF.open_loop = 0;
end
if ~isfield(CF, 'linear_car') % Find linear in CF or default it.
CF.linear_car = 0;
end
if ~isfield(CF, 'use_delay_buffer') % To let CAR be fully parallel.
CF.use_delay_buffer = 0;
end
n_ch = CF.n_ch;
naps = zeros(n_samp, n_ch, n_ears); % allocate space for result
if do_BM
BM = zeros(n_samp, n_ch, n_ears);
seg_ohc = zeros(n_samp, n_ch, n_ears);
seg_agc = zeros(n_samp, n_ch, n_ears);
end
if nargout > 5
seg_ihc_potential = zeros(n_samp, n_ch, n_ears);
else
seg_ihc_potential = [];
end
% A 2022 addition to make open-loop running behave. In open_loop mode, these
% coefficients are set, per AGC filter outputs, when we CARFAC_Close_AGC_Loop
% on AGC filter output updates. They drive the zB and g coefficients to the
% intended value by the next update, but if open_loop they would just keep
% going, extrapolating. The point of open_loop mode is to stop them moving,
% so we need to make sure these deltas are zeroed in case the mode is switched
% from closed to open, as in some tests to evaluate the transfer functions
% before and after adapting to a signal.
if CF.open_loop
% The interpolators may be running if it was previously run closed loop.
for ear = 1:CF.n_ears
CF.ears(ear).CAR_state.dzB_memory = 0; % To stop intepolating zB.
CF.ears(ear).CAR_state.dg_memory = 0; % To stop intepolating g.
end
end
% Apply control coeffs to where they are needed.
for ear = 1:CF.n_ears
CF.ears(ear).CAR_coeffs.linear = CF.linear_car; % Skip OHC nonlinearity.
CF.ears(ear).CAR_coeffs.use_delay_buffer = CF.use_delay_buffer;
end
%detects = zeros(n_ch, n_ears);
for k = 1:n_samp
% at each time step, possibly handle multiple channels
for ear = 1:n_ears
% This would be cleaner if we could just get and use a reference to
% CF.ears(ear), but Matlab doesn't work that way...
[car_out, CF.ears(ear).CAR_state] = lyon2011_carstep( ...
input_waves(k, ear), CF.ears(ear).CAR_coeffs, ...
CF.ears(ear).CAR_state);
% update IHC state & output on every time step, too
[ihc_out, CF.ears(ear).IHC_state] = lyon2011_ihcstep( ...
car_out, CF.ears(ear).IHC_coeffs, CF.ears(ear).IHC_state);
% run the AGC update step, decimating internally,
[CF.ears(ear).AGC_state, AGC_updated] = lyon2011_agcstep( ...
ihc_out, CF.ears(ear).AGC_coeffs, CF.ears(ear).AGC_state);
% save some output data:
naps(k, :, ear) = ihc_out; % output to neural activity pattern
if do_BM
BM(k, :, ear) = car_out;
state = CF.ears(ear).CAR_state;
seg_ohc(k, :, ear) = state.zA_memory;
seg_agc(k, :, ear) = state.zB_memory;
end
if ~isempty(seg_ihc_potential)
seg_ihc_potential(k, :, ear) = 1 - CF.ears(ear).IHC_state.cap1_voltage;
end
end
% connect the feedback from AGC_state to CAR_state when it updates;
% all ears together here due to potential mixing across them:
if AGC_updated
if n_ears > 1
% do multi-aural cross-coupling:
CF.ears = lyon2011_croscouple(CF.ears);
end
if ~CF.open_loop
CF = lyon2011_closeagcloop(CF); % Starts the interpolation of zB and g.
end
end
end