THE AUDITORY MODELING TOOLBOX

Applies to version: 1.0.0

View the help

Go to function

BRUCE2018 - Auditory-nerve filterbank (improved synapse)

Program code:

function [output,info] = bruce2018(stim,fsstim, fc, varargin) 
%BRUCE2018 Auditory-nerve filterbank (improved synapse)
%   Usage: [output] = bruce2018(stim,fsstim, fc);
%          [output,info] = bruce2018(stim, fsstim, fc, varargin);
%
%   Input parameters:
%     stim        : Pressure waveform of stimulus (timeseries)
%     fsstim      : Sampling frequency of stimulus
%     fc         : Frequency vector containing the CFs. 
%                  Use logspace(log10(flow), log10(fhigh),numCF) to
%                  replicate the results from bruce et al. (2018)
%
%   Output parameters:
%     output       : a struct containing the various modelstage outputs
%
%   The struct output contains:
%
%     cohcs   actually used COHCs in the simulations (see cohc below)
%
%     cihcs   actually used CIHCs in the simulations (see ihc below)
%
%     sponts   ?
%
%     tabss   ?
%
%     trels   ?
%
%     neurogram_ft   (fine-timing) neurogram calculated from the synapse output [time CFs]
%
%     t_ft   time axis of neurogram_ft (s)
%
%     neurogram_mr   average of spike count in each PSTH bin [time CF]
%
%     t_mr   time axis of neurogram_mr (s)
%
%     neurogram_Sout   synapse output [time CF]
%
%     t_Sout   time axis of neurogram_Sout (s)
%
%     fc   used CFs (Hz)
%
%   if the flag 'outputPerCF' is specified (default), additional variables are attached:
%
%     psth_ft     fine-timing PSTH [time CF]
%
%     meanrate    average spiking rate (spikes/s) [time CF]
%
%     varrate     variance of the spiking rate (spikes/s) [time CF]
%
%   If the flag 'outputPerSynapse' is specified, psth_ft, meanrate, and 
%   varrate are output but they have the dimensions [time CF Syn] with Syn 
%   being the number of synapses. 
%
%   Additionally:
%
%     synout   the output of a synapse [time CF Syn]
%
%     spont    ??? 
%
%     tabs     ???
%
%     trel     ???
%
%     info     a struct containing the parameter settings applied
%
%   BRUCE2018(...) returns modeled responses of multiple AN fibers tuned to 
%   various characteristic frequencies characterstic frequencies evenly spaced 
%   along a logarithmic scale.
%
%   Please cite the references below if you use this model.
%
%   This function takes the following optional key/value pairs:
%
%     'numsponts',numsponts     Overall numbers of fibers (???THIS IS REDUNDANT)
%
%     'ag_fs',ag_fs             Frequencies at which the audiogram should be
%                                evaluated
%
%     'ag_db',ag_db             Hearing loss [dB] at the frequencies 'ag_fs'. 'ag_db'
%                                needs to have the same dimension as 'ag_fs'
%
%     'cohcs',cohcs    OHC scaling factors: 1 denotes normal OHC function (default); 
%                      0 denotes complete OHC dysfunction. Can be a vector
%                      of dimension [1, numCF] or a scalar
%
%     'cihcs',cihcs    IHC scaling factors: 1 denotes normal IHC function (default); 
%                      0 denotes complete IHC dysfunction. Can be a vector
%                      of dimension [1, numCF] or a scalar
%
%     'numL',nl          number of low-spontaneous rate nerve fibres
%
%     'lossL',lls         percentage of nerve fibre loss [0...1]
%                                0...no fibres there, 1...all fibres there (healthy)
%
%     'numM',nm          number of medium-spontaneous rate nerve fibres
%
%     'lossM',lms         percentage of nerve fibre loss [0...1]
%                                0...no fibres there, 1...all fibres there (healthy)
%
%     'numH',nh         number of high-spontaneous rate nerve fibres
%
%     'lossH',lhs        percentage of nerve fibre loss [0...1]
%                                0...no fibres there, 1...all fibres there (healthy)
%
%     'psthbinwidth_mr',psthbw   mean-rate binwidth [s]
%
%     'windur_ft',winft          fine-timing neurogram window length
%
%     'windur_mr',winmr          mean-rate neurogram window length
%
%     'nrep',nrep                Number of repetitions for the mean rate, 
%                                rate variance & psth calculation. Default is 1.
%
%     'reptime',rt               length of one repetition of the stimuli with pause.
%                                Default is 1.2  stimuli length.
%
%     'fsmod',fsmod              Model sampling rate. It is possible to run the model 
%                                at a range of fsmod between 100 kHz and 500 kHz.
%                                Default value is 200 kHz for cats and 100 kHz for humans.
%
%   BRUCE2018 accepts the following flags:
%
%     'fitaudiogram'      Derive the cihc and cohc values from an audiogram
%                         (Default: off)
%
%     'human'              Use model parameters for humans. This is the default.
%
%     'cat'                Use model parameters for cats.
%
%     'fixedFGn'           Fractional Gaussian noise will be the same in every 
%                          simulation. This is the default.
%
%     'varFGn'             Fractional Gaussian noise will be different in every 
%                          simulation.
%
%     'approxPL'           Use approxiate implementation of the power-law
%                          functions. This is the default.
%
%     'actualPL'           Use actual implementation of the power-law functions.
%
%     'outputPerSynapse'   If activated, tor each nerve fibre, the synapse 
%                          output is written to the output struct.
%                          This can considerably slow down the calculations.
%
%   'bruce2018' comprises of 4 modelstages. They can be parametrized as
%   follows:
%
%   'generateANpopulation':   Default. If 'generateANpopulation' then the
%                             parameters for the AN population wil be 
%                             generated by the function 
%
%
%     'numsponts',numsponts   if this parameter is passed and not zero, no auditory
%                             nerve population is generated. the parameters
%                             'sponts' , 'tabss' and 'trels' can be fully
%                             customized. They can take arbitrary values
%                             and dimensions. No checks on their validity
%                             are conducted. This is convenient for
%                             simulating the behavior of a specific fiber
%                             type.
%
%   If 'numsponts' is not passed to Bruce, the number of fibers is
%   calculated as the sum of fibers with low-, medium, and high
%   spontaneous firing rate. An AN population is generated for each
%   characteristic frequency. The vector of characteristic frequencies can
%   be passed directly via 'fcs'.
%
%   'fitaudiogram' :
%
%   'fitaudiogram'     this flag triggers the calculation of the hearing
%                      loss factors 'cihc' and 'cohc' from a vector of
%                      frequencies and threshold-shifts [dB]. It is
%                      switched off per default. When the flag is not
%                      passed, 'cihc' and 'cohc' can be directly specified,
%                      either as scalars or as vectors of dimension [1 numCFs].
%                      The default in both cases ('fitaudiogram',
%                      'no_fitaudiogram') reflects unimpaired hearing.
%
%   The other two modelstages 'bruce2018_innerhaircells' and
%   'bruce2018_synapse' are always active. '_innerhaircells' is called for
%   each element in 'fcs' (each characteristic frequency), and '_synapse'
%   is called for each nerve fiber. Per default and for execution speed, 
%   only results from outside of the nerve fiber loop are written to the 
%   struct 'output'. To retrieve results per fiber, set the flag
%   'ouputPerSynapse'. The actual parameters used in bruce2018 are
%   output to the 'info' struct.
%     
%
%   See also: plot_bruce2018 demo_bruce2018_auditorynervemodel
%             demo_bruce2018 bruce2018_synapse bruce2018_generateanpopulation
%             bruce2018_innerhaircells bruce2018_fitaudiogram bruce2018_ffgn
%             exp_bruce2018 demo_carney2015 carney2015_fitaudiogram carney2015_generateneurogram
%             exp_osses2022 zilany2014
%
%   References:
%     I. C. Bruce, Y. Erfani, and M. S. R. Zilany. A phenomenological model
%     of the synapse between the inner hair cell and auditory nerve:
%     Implications of limited neurotransmitter release sites. Hearing
%     Research, 360:40--54, 2018.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.10.0/doc/models/bruce2018.php

% Copyright (C) 2009-2020 Piotr Majdak and the AMT team.
% This file is part of Auditory Modeling Toolbox (AMT) version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

%   #StatusDoc: Good
%   #StatusCode: Perfect
%   #Verification: Verified
%   #Requirements: MATLAB MEX M-Signal
%   #Author: Ian Bruce: basic code of the model
%   #Author: Alejandro Osses (2020): original implementation
%   #Author: Clara Hollomey (2021): adapted to the AMT 1.0
%   #Author: Piotr Majdak (2021): adaptations to exp_osses2022

if nargin<3
  error('%s: Too few input parameters.',upper(mfilename));
end;

% Define input flags and values
definput.import = {'bruce2018'}; % load defaults from arg_bruce2018

[flags,kv]  = ltfatarghelper({},definput,varargin);

% Derive the number of CF fibres
numCF = length(fc);

if length(kv.cihcs) ~= numCF && length(kv.cihcs) ~= 1
  error('cihc needs to either be a scalar or a vector of the same size as fc.')
end
if length(kv.cohcs) ~= numCF && length(kv.cohcs) ~= 1
  error('cohc needs to either be a scalar or a vector of the same size as fc.')
end

fs=kv.fsmod;  % sampling rate (Hz) of the model
tdres   = 1/fs; % sampling interval (s), i.e., the reciprocal of fs

stim	= resample(stim,fs,fsstim);	% resample the stimulus to the model fs
T  = length(stim)/fs;  % actual stimulus duration in seconds
smw_ft = hamming(kv.windur_ft);
smw_mr = hamming(kv.windur_mr);
simdur = ceil(T*kv.reptime/kv.psthbinwidth_mr)*kv.psthbinwidth_mr; % time interval (s) between stimulus repetitions

% species is either "cat" (1) or "human" (2): "1" for cat and "2" for human
if flags.do_cat, species = 1; else species = 2; end    

% noiseType is for fixed fGn (noise will be same in every simulation) or 
% variable fGn: "0" for fixed fGn and "1" for variable fGn
if flags.do_varFGn, noiseType = 0; else noiseType = 1; end

% implnt is for "approxiate" or "actual" implementation of the power-law functions: 
%"0" for approx. and "1" for actual implementation
if flags.do_actualPL, implnt = 1; else implnt = 0; end

if flags.do_fitaudiogram
  % mixed loss
  dbloss = interp1(kv.ag_fs,kv.ag_dbloss,fcs,'linear','extrap');
  [cohcs,cihcs,OHC_loss, IHC_loss]=bruce2018_fitaudiogram(fc,dbloss,species);
  info.OHC_loss = OHC_loss;
  info.IHC_loss = IHC_loss;
else
   cohcs = kv.cohcs.* ones(1, numCF);
   cihcs = kv.cihcs.* ones(1, numCF);
   info.OHC_loss = [];
   info.IHC_loss = [];
end

% generate number of fibers? 
if flags.do_autoSR,
    % generate parameters for a population based on numL, numM, and numH
  [sponts,tabss,trels] = bruce2018_generateanpopulation(numCF,[kv.numL kv.numM kv.numH]);
  numsponts = round([kv.lossL kv.lossM kv.lossH].*[kv.numL kv.numM kv.numH]);
  cntsponts = sum(numsponts);
else
    % use predefined SR parameters for all fibers
  numsponts = [kv.numsponts 0 0]; % used in exp_bruce2018('fig8b');
  cntsponts = kv.numsponts;
  sponts = kv.spont;
  tabss = kv.tabs;
  trels = kv.trel;
end

% initializations
init_size = simdur*fs;
output_len=floor(simdur/tdres+0.5)*kv.nrep; % length of vihc, c1, c2, synout
psth_len=output_len/kv.nrep; % length of vr, mr, psth_ft
psthbins = round(kv.psthbinwidth_mr*fs);  % number of psth_ft bins per psth bin

neurogram_ft = zeros(round(init_size),numCF);
neurogram_Sout = zeros(round(init_size)*kv.nrep,numCF);
neurogram_mr = zeros(round(init_size)/round(kv.psthbinwidth_mr*fs),numCF);
output.vihc=zeros(output_len,numCF);
output.C1=zeros(output_len,numCF);
output.C2=zeros(output_len,numCF);
if flags.do_outputPerSynapse
  output.psth_ft=zeros(psth_len,numCF,cntsponts);
  output.meanrate=zeros(psth_len,numCF,cntsponts);
  output.varrate=zeros(psth_len,numCF,cntsponts);
  output.psth=zeros(psth_len/psthbins,numCF,cntsponts);
end
if flags.do_outputPerCF
  output.psth_ft=zeros(psth_len,numCF);
  output.meanrate=zeros(psth_len,numCF);
  output.varrate=zeros(psth_len,numCF);
  output.psth=zeros(psth_len/psthbins,numCF);
end

for ii = 1:numCF
  %for each CF, collect the appropriate tabs, trels and sponts, and calculate
  %  the inner hair cell potential (for the whole stimulus)
%     FC = fc(ii);
%     cohc = cohcs(ii);
%     cihc = cihcs(ii);
    
    [vihc, C1, C2] = bruce2018_innerhaircells(stim,fc(ii),kv.nrep,tdres,simdur,cohcs(ii),cihcs(ii),species);  
%   [vihc, C1, C2] = zilany2014_innerhaircells(stim,FC,kv.nrep,tdres,simdur,cohc,cihc,species); equivalent to bruce2018
    output.vihc(:,ii) = vihc;
    output.C1(:,ii) = C1;
    output.C2(:,ii) = C2;

    if cntsponts>0
      
      if flags.do_autoSR, % use generated SR parameters
          spont = [sponts.LS(ii,1:numsponts(1)) sponts.MS(ii,1:numsponts(2)) sponts.HS(ii,1:numsponts(3))];
          tabs = [tabss.LS(ii,1:numsponts(1)) tabss.MS(ii,1:numsponts(2)) tabss.HS(ii,1:numsponts(3))];
          trel = [trels.LS(ii,1:numsponts(1)) trels.MS(ii,1:numsponts(2)) trels.HS(ii,1:numsponts(3))];       
      else   % use the same SR parameters for all fibers
          spont = sponts*ones(1, cntsponts);
          tabs = tabss*ones(1, cntsponts);
          trel = trels*ones(1, cntsponts); 
      end    
      
      for jj = 1:cntsponts  % calculate the synapse output for each fibre type     

          amt_disp(['CF = ' int2str(ii) '/' int2str(numCF) '; spont = ' int2str(jj) '/' int2str(cntsponts)],'volatile');       

          [psth_ft,mr,vr,synout] = bruce2018_synapse(vihc,fc(ii),kv.nrep,tdres,noiseType,implnt,spont(jj),tabs(jj),trel(jj));

          neurogram_Sout(:,ii) = neurogram_Sout(:,ii)+synout;
          cnt = sum(reshape(psth_ft,psthbins,length(psth_ft)/psthbins))';
          neurogram_ft(:,ii) = neurogram_ft(:,ii)+filter(smw_ft,1,psth_ft);
          neurogram_mr(:,ii) = neurogram_mr(:,ii)+filter(smw_mr,1,cnt);

          if flags.do_outputPerSynapse
              output.psth_ft(:, ii, jj) = psth_ft;
              output.meanrate(:, ii, jj) = mr;
              output.varrate(:, ii, jj) = vr;
              output.synout(:, ii, jj) = synout;
              output.psth(:,ii,jj)=cnt;
          end
          if flags.do_outputPerCF,
              output.psth_ft(:,ii)=output.psth_ft(:,ii)+psth_ft;
              output.meanrate(:,ii)=output.meanrate(:,ii)+mr;
              output.varrate(:,ii)=output.varrate(:,ii)+vr;
              output.psth(:,ii)=output.psth(:,ii)+cnt;
          end
      end
      amt_disp();
      if flags.do_outputPerCF
        output.psth_ft(:,ii)=output.psth_ft(:,ii)/cntsponts;
        output.meanrate(:,ii)=output.meanrate(:,ii)/cntsponts;
        output.varrate(:,ii)=output.varrate(:,ii)/cntsponts;
      end
    end
end
% amt_disp();
neurogram_ft = neurogram_ft(1:kv.windur_ft/2:end,:); % 50% overlap in Hamming window
t_ft = 0:kv.windur_ft/2/fs:(size(neurogram_ft,1)-1)*kv.windur_ft/2/fs; % time vector for the fine-timing neurogram
neurogram_mr = neurogram_mr(1:kv.windur_mr/2:end,:); % 50% overlap in Hamming window
t_mr = 0:kv.windur_mr/2*kv.psthbinwidth_mr:(size(neurogram_mr,1)-1)*kv.windur_mr/2*kv.psthbinwidth_mr; % time vector for the mean-rate neurogram
t_Sout = 0:1/fs:(size(neurogram_Sout,1)-1)/fs; % time vector for the synapse output neurogram    
           
%--------------------------------------------------------------------------
% write everything into an output struct
output.cohcs = cohcs;
output.cihcs = cihcs;
output.sponts = sponts;
output.tabss = tabss;
output.trels = trels;
output.t_ft = t_ft;
output.neurogram_ft = neurogram_ft;
output.neurogram_mr = neurogram_mr;
output.neurogram_Sout = neurogram_Sout;
output.t_mr = t_mr;
output.t_Sout = t_Sout;
output.fc = fc;
info.keyvals = kv;
info.flags = flags;