This documentation page applies to an outdated AMT version (1.5.0). Click here for the most recent page.
function [net,tr] = llado2022_trainnn(x,y,hiddenLayerSize,augmentation_ratio,SNR)
%LLADO2022_TRAINNN trains the neural network
% Usage: [net,tr] = llado2022_trainnn(x,y,hiddenLayerSize,augmentation_ratio,SNR);
%
% Input parameters:
% x : Features of the train subset
% y : Labels for training the network
% hiddenLayerSize : Size of the hidden layer
% augmentation_ratio : Ratio for data augmentation stage
% SNR : SNR of the augmented data
%
% Output parameters:
% net : trained network
% tr : training history
%
% LLADO2022_TRAINNN trains the neural network
%
% See also: llado2022 exp_llado2022 demo_llado2022
%
% References:
% Lladó, Pedro, Hyvärinen, Petteri, and Pulkki, Ville. Auditory
% model-based estimation of the effect of head-worn devices on frontal
% horizontal localisation. Acta Acust., 6:1, 2022. [1]http ]
%
% References
%
% 1. https://doi.org/10.1051/aacus/2021056
%
%
% Url: http://amtoolbox.org/amt-1.5.0/doc/modelstages/llado2022_trainnn.php
% #StatusDoc: Good
% #StatusCode: Perfect
% #Verification: Verified
% #Requirements: MATLAB M - Communication Systems
% #Author: Pedro Llado (2022)
% #Author: Petteri Hyvärinen (2022)
% #Author: Ville Pulkki (2022)
% This file is licensed unter the GNU General Public License (GPL) either
% version 3 of the license, or any later version as published by the Free Software
% Foundation. Details of the GPLv3 can be found in the AMT directory "licences" and
% at <https://www.gnu.org/licenses/gpl-3.0.html>.
% You can redistribute this file and/or modify it under the terms of the GPLv3.
% This file is distributed without any warranty; without even the implied warranty
% of merchantability or fitness for a particular purpose.
clear net;
net = fitnet(hiddenLayerSize);
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 30/100;
net.divideParam.testRatio = 0/100;
%% Training data augmentation
Y_output_aug = y;
for aug_iter = 1:augmentation_ratio
for id_col = 1:length(y(1,:))
aux= y(:,id_col);
Y_output_aug((aug_iter)*length(y(:,1))+1:(1+aug_iter)*length(y(:,1)),id_col) = aux;
end
end
clear X_input_aug;
X_input_aug(:,:) = x(:,:);
for aug_iter = 1:augmentation_ratio
for id_col = 1:length(x(1,:))
%aux= awgn(x(:,id_col),SNR,'measured');
auxnoise = randn(size(x(:,id_col)));
aux = x(:,id_col) + scaletodbspl(auxnoise, dbspl(x(:,id_col)) - SNR);
X_input_aug((aug_iter)*length(x(:,1))+1:(1+aug_iter)*length(x(:,1)),id_col) = aux;
end
end
[net, tr] = train(net,X_input_aug',Y_output_aug');
end