This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [phi,phi_std,itd,ild,cfreqs] = estimate_azimuth(sig,lookup,model,do_spectral_weighting,fs)
%ESTIMATE_AZIMUTH Estimate the perceived azimuth using a binaural model
% Usage: [phi,itd,ild,cfreqs] = estimate_azimuth(sig,lookup,model,do_spectral_weighting,fs)
% [phi,itd,ild,cfreqs] = estimate_azimuth(sig,lookup,model,do_spectral_weighting)
% [phi,itd,ild,cfreqs] = estimate_azimuth(sig,lookup,model)
% [phi,itd,ild,cfreqs] = estimate_azimuth(sig,lookup)
%
% Input parameters:
% sig : binaural singal
% lookup : lookup table to map ITDs to angles (struct)
% model : model to use:
% 'dietz2011' (default)
% 'lindemann1986'
% do_spectral_weighting : apply spectral weighting of ITD values after
% Raatgever (1980) (default: false)
% fs : sampling rate (default: 44100) (Hz)
%
% Output parameters:
% phi : estimated azimuth (rad)
% itd : calculated ITD (s)
% ild : calculated ILD (dB)
% cfreqs : center frequencies of used auditory filters (Hz)
%
% `estimate_azimuth(sig,lookup,model,do_spectral_weighting,fs)` uses a
% binaural model to estimate the perceived direction for a given binaural
% signal. Therefore, it needs the struct lookup, which maps ITD values to
% the corresponding angles. This can be created with the
% |itd2anglelookuptable| function. If do_spectral_weighting is set to true,
% a spectral weighting of the single ITD values after Raatgever is applied. He
% has done some measurements to see what is the spectral domincance region for
% lateralization by the ITD and found a region around 600 Hz. Stern et al.
% have fitted his data with a formula used in this function.
%
% See also: itd2anglelookuptable
%
% References: raatgever1980 stern1988 dietz2011auditory lindemann1986a wierstorf2013
% AUTHOR: Hagen Wierstorf
%% ===== Checking of input parameters ==================================
nargmin = 2;
nargmax = 5;
error(nargchk(nargmin,nargmax,nargin));
if nargin==2
model = 'dietz2011';
do_spectral_weighting = false;
fs = 44100;
elseif nargin==3
do_spectral_weighting = false;
fs = 44100;
elseif nargin==4
fs = 44100;
end
if ~ischar(model)
error('%s: %s need to be a string.',upper(mfilename),model);
end
if ~isnumeric(fs) || ~isscalar(fs) || fs<0
error('%s: %s need to be a positive scalar.',upper(mfilename),fs);
end
%% ===== Computation ====================================================
%
% === Dietz model ===
if strcmpi('dietz2011',model)
ic_threshold=0.98;
% Run the Dietz model on signal
[fine,~,cfreqs,ild_tmp] = dietz2011(sig,fs);
% Unwrap ITDs and get the azimuth values
itd = dietz2011unwrapitd(fine.itd(:,1:12),ild_tmp(:,1:12),fine.f_inst,2.5);
phi = itd2angle(itd,lookup);
% Calculate the median over time for every frequency channel of the azimuth
for n = 1:size(phi,2)
idx = fine.ic(:,n)>ic_threshold&[diff(fine.ic(:,n))>0; 0];
angle = phi(idx,n);
idx = ~isnan(angle);
if size(angle(idx),1)==0
azimuth(n) = NaN;
else
azimuth(n) = median(angle(idx));
end
end
% Calculate ITD and ILD values
ild = median(ild_tmp,1);
itd = median(itd,1);
elseif strcmpi('lindemann1986',model)
% run Lindemann model on signal
c_s = 0.3; % stationary inhibition
w_f = 0; % monaural sensitivity
M_f = 6; % decrease of monaural sensitivity
T_int = inf; % integration time
N_1 = 1764; % sample at which first cross-correlation is calculated
[cc_tmp,~,ild,cfreqs] = lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1);
cc_tmp = squeeze(cc_tmp);
% Calculate tau (delay line time) axes
tau = linspace(-1,1,size(cc_tmp,1));
% find max in cc
itd = zeros(1,size(cc_tmp,2));
for jj = 1:size(cc_tmp,2)
[~,idx] = max(cc_tmp(:,jj));
itd(jj) = tau(idx)/1000;
end
azimuth = itd2angle(itd,lookup);
else
error('%s: %s is not a valid model to choose.',upper(mfilename),model);
end
% Remove outliers
[azimuth,cfreqs] = remove_outlier(azimuth,itd,cfreqs);
% Calculate mean about frequency channels
if length(azimuth)==0
phi = rad(90);
elseif do_spectral_weighting
w = spectral_weighting(cfreqs);
phi = sum(azimuth.*w)/sum(w);
else
phi = median(azimuth);
phi_std = std(azimuth);
end
end % of main function
%% ===== Subfunctions ====================================================
function [azimuth,cfreqs] = remove_outlier(azimuth,itd,cfreqs)
cfreqs = cfreqs(1:12);
% remove unvalid ITDs
azimuth = azimuth(abs(itd(1:12))<0.001);
cfreqs = cfreqs(abs(itd(1:12))<0.001);
% remove NaN
azimuth = azimuth(~isnan(azimuth));
cfreqs = cfreqs(~isnan(azimuth));
% remove outliers more than 30deg away from median
if length(azimuth)>0
cfreqs = cfreqs(abs(azimuth-median(azimuth))<30);
azimuth = azimuth(abs(azimuth-median(azimuth))<30);
end
end
function w = spectral_weighting(f)
% Calculate a spectral weighting after Stern1988, after the data of
% Raatgever1980
b1 = -9.383e-2;
b2 = 1.126e-4;
b3 = -3.992e-8;
w = 10.^( -(b1*f+b2*(f).^2+b3*(f).^3)/10 );
end