THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

EXP_LINDEMANN1986 - Figures from Lindemann (1986)

Program code:

function output = exp_lindemann1986(varargin)
%EXP_LINDEMANN1986 Figures from Lindemann (1986)
%   Usage: output = exp_lindemann1986(flag)
%
%   `exp_lindemann1986(flag)` reproduces the results for the figure given
%   by *flag* from the Lindemann (1986) paper. It will also plot the
%   results.  The format of its output depends on the chosen figure. If not
%   otherwise stated, the cross-correlation of a pure tone sinusoids with
%   f=500 Hz and different ITDs, ILDs or a combination of both is
%   calculated. Because of the stationary character of the input signals,
%   $T_{int} = \inf$ is used to produce only one time step in the crosscorr
%   output.
%   
%   The following flags can be specified;
%
%     'plot'     plot the output of the experiment. This is the default.
%
%     'noplot'   Don't plot, only return data.
%
%     'auto'     Re-calculate the file if it does not exist. Return 1 if the
%                file exist, otherwise 0. This is the default
%
%     'refresh'  Always recalculate the file.
%
%     'cached'   Always use the cached version. Throws an error if the
%                file does not exist.
%
%     'fig6'  Reproduce Fig.6 from Lindemann (1986).  The cross-correlation is
%             calculated for different ITDs and different inhibition factors
%             $c_s=0,0.3,1$. Afterwards for every *c_s* the correlation is
%             plotted for every used ITD dependend on the correlation-time
%             delay. The output is cross-correlation result of the figure.
%             The output has dimensions: number of *c_s* conditions x
%             nitds x delay line length
%
%     'fig7'  Reproduce Fig.7 from Lindemann (1986).  The cross-correlation
%             is calculated for different ITDs and different inhibition
%             factors $c_s=0,0.2,0.4,0.6,0.8,1.0$. Afterwards for every
%             *c_s* the displacement of the centroid of the auditory image
%             is calculated and plotted depending on the ITD. The output is
%             the displacement of the centroid for different *c_s* values.
%             The output has dimensions: *c_s* x nitds
%
%     'fig8'  Reproduce Fig.8 from Lindemann (1986).  The cross-correlation
%             is calculated for different ILDs and different inhibition factors
%             $c_s = 0.3, 1$. Afterwards for every *c_s* the ILD is plotted
%             depending on the correlation time. The output is the
%             cross-correlation result of the figure. The dimensions of the
%             output are: number of *c_s* conditions x nilds x delay line length.
%
%     'fig10'  Reproduce Fig.10 from Lindemann (1986). The
%              cross-correlation is calculated for different ILDs with an
%              inhibition factor of $c_s = 0.3$ and a monaural detector
%              factor $w_f = 0.035$. Afterwards the ILD is plotted depending
%              on the correlation time.  The output is the cross-correlation
%              result of the figure.  The output has dimensions:
%              number of *c_s* conditions x nilds x delay line length
%
%     'fig11'  Reproduce Fig.11 from Lindemann (1986).  The centroid
%              position is calculated for different ILDs, an inhibition
%              factor $c_s = 0.3$ and a monaural detector factor $w_f =
%              0.035$. Afterwards for every *c_s* the displacement of the
%              centroid is plotted dependend on the ILD. The output is the
%              cross-correlation result of the to figure. The dimensions of
%              the output are: number of *c_s* conditions x nilds x delay
%              line length
%
%     'fig12'  Reproduce Fig.12 from Lindemann (1986). The centroids are
%              calculated for combinations of ITDs and ILDs.  After the
%              calculation the values for the centroids of the stimuli are
%              searched to find the nearest value to 0. The corresponding ILD
%              value is stored in output and plotted depending on the
%              ITD. The output is the simulated results for a trading
%              experiment. The ILD value for getting a centroid near the
%              center for an combined ITD, ILD stimulus with a given ITD
%              value.  The output has dimensions: number of ITDs x 1
%
%     'fig13'  Reproduce Fig.13 from Lindemann (1986). The centroids are
%              calculated for ILD only and ITD/ILD combination
%              stimuli. After the calculation the values for the centroids
%              of the ILD only stimuli are searched to find the nearest
%              value to the centroid of a given combined stimulus. The
%              resulting ILD value is stored for different combinaition
%              values and plotted dependend on ITD. The output is the ILD
%              value for getting the same lateralization with an ILD only
%              stimulus compared to a stimulus with both ITD and ILD.
%              The output has dimensions: number of ILDs x number of ITDs
%
%     'fig14a'  Reproduce fig.14 (a) from Lindemann (1986). The
%               cross-correlations for a combination of ILDs and a ITD of
%               ~1ms are calculated. This is done for different ILDs and
%               different inhibition factors $c_s = 0,0.2,0.4,0.6,1$.
%               Afterwards for every *c_s* the centroid of the auditory image
%               is calculated and plotted dependend on the ILD. The output is
%               the displacement of the centroid for different *c_s* values
%               and ILDs. The output has dimensions: *c_s* x nilds
%
%     'fig14b'  Reproduce Fig.14 (b) from Lindemann (1986). The
%               cross-correlations for a combination of ILDs and a ITD of ~1ms
%               are calculated. This is done for different small ILDs with a
%               standard deviation of 0-5. Afterwards for every standard
%               deviation the mean centroid displacement is calculated and
%               plotted dependend on the ITD. The output is the displacement
%               of the centroid as a function of the ITD averaged over
%               different small ILD with a standard deviation of $0,1,2,3,4,5$.
%               The output has dimensions: nilds x nitds
%
%     'fig15'  Reproduce Fig.15 from Lindemann (1986). The cross-correlation
%              for an ITD of -0.5ms is calculated. This is done for
%              different ILDs, an inhibition factor $c_s = 0.3$ and a
%              monaural detector factor $w_f = 0.035$. Afterwards for every
%              *c_s* the ILD is plotted depending on the correlation
%              time. The output is the cross-correlation result. The output
%              has dimensions: number of *c_s* conditions x nilds x delay line
%              length
%
%     'fig16'  Reproduces Fig.16 from Lindemann (1986). The
%              cross-correlations for combinations of ITDs and ILDs are
%              calculated. Afterwards the combinations of ILD and ITD are
%              looked for the ones that have two peaks in its
%              cross-correlation which have the nearly same height. The
%              corresponding ILD value is than stored in output and plotted
%              dependend on the ITD. The output is the ILD value for which
%              the cross-correlation for a combined ITD, ILD stimulus has
%              two peaks with the same (nearest) height, depending on the
%              ITD. The output has dimensions: number of ITDs x 1
%
%     'fig17'  Reproduce Fig.17 from Lindemann (1986). The
%              cross-correlation for ITD/ILD combination and ITD only
%              stimuli is calculated. Afterwards the values for the
%              centroids and maxima of the ITD only stimuli are searched to
%              find the nearest value to the centroid and maxima of a given
%              combined stimulus. The resulting ITD value is stored for
%              different combinaition values. The output is the ITD
%              value for getting the same lateralization with an ITD only
%              stimulus compared to a stimulus with both ITD and ILD using
%              the centroid of the cross-correlation.  The output has
%              dimensions: number of ITDs x number of ILDs. 
%
%     'fig18'  Reproduce Fig.18 from Lindemann (1986). The cross-correlation
%              of pink noise with different interaural coherence values is
%              calculated.  Afterwards for every interaural coherence value
%              the correlation is plotted dependend on the correlation-time
%              delay. The output is the cross-correlation result of the
%              figure. The output has dimensions: number of interaural
%              coherences x delay line length
%
%   If no flag is given, the function will print the list of valid flags.
%
%   Examples:
%   ---------
%
%   To display Figure 6 use :::
%
%     exp_lindemann1986('fig6');
%
%   To display Figure 7 use :::
%
%     exp_lindemann1986('fig7');
%
%   To display Figure 8 use :::
%
%     exp_lindemann1986('fig8');
%
%   To display Figure 10 use :::
%
%     exp_lindemann1986('fig10');
%
%   To display Figure 11 use :::
%
%     exp_lindemann1986('fig11');
%
%   To display Figure 12 use :::
%
%     exp_lindemann1986('fig12');
%
%   To display Figure 13 use :::
%
%     exp_lindemann1986('fig13');
%
%   To display Figure 14a use :::
%
%     exp_lindemann1986('fig14a');
%
%   To display Figure 14b use :::
%
%     exp_lindemann1986('fig14b');
%
%   To display Figure 15 use :::
%
%     exp_lindemann1986('fig15');
%
%   To display Figure 16 use :::
%
%     exp_lindemann1986('fig16');
%
%   To display Figure 17 use :::
%
%     exp_lindemann1986('fig17');
%
%   To display Figure 18 use :::
%
%     exp_lindemann1986('fig18');
%
%   References: lindemann1986a
%

%   AUTHOR: Hagen Wierstorf

definput.import={'amtredofile'};
definput.flags.type={'missingflag','fig6','fig7','fig8','fig10','fig11',...
                    'fig12','fig13','fig14a','fig14b','fig15',...
                    'fig16','fig17','fig18'};

definput.flags.plot={'plot','noplot'};

[flags,keyvals]  = ltfatarghelper({},definput,varargin);


if flags.do_missingflag
  flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
             sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
  error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;

save_format='-v6';

%% ------ FIG 6 -----------------------------------------------------------
if flags.do_fig6

  s = [mfilename('fullpath'),'_fig6.mat'];
    
  % Sampling rate
  fs = 44100;
  % Frequency of the sinusoid
  f = 500;
  T = 1/f;
  fc = round(freqtoerb(f));   % corresponding frequency channel
  
  % Model parameter
  T_int = inf;
  w_f = 0;
  M_f = 6; % not used, if w_f==0
  c_s = [0,0.3,1];
  
  % NOTE: the longer the signal, the more time we need for computation. On the
  % other side N_1 needs to be long enough to eliminate any onset effects.
  % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
  % results for this demo.
  N_1 = ceil(25*T*fs);
  siglen = ceil(30*T*fs);
  
  % Calculate crosscorrelations for 21 ITD points between 0~ms and 1~ms
  nitds = 21; % number of used ITDs
  ndl = round(fs/1000)+1;   % length of the delay line (see lindemann1986bincorr.m)
  itd = linspace(0,1,nitds);
  
  if amtredofile(s,flags.redomode)

    output = zeros(length(c_s),nitds,ndl);
    for ii = 1:nitds; 
        % Generate ITD shifted sinusoid
        sig = itdsin(f,itd(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation and apply onset window
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation for different inhibition factor c_s
        for jj = 1:length(c_s)
            % Calculate cross-correlation (and squeeze due to T_int==inf)
            tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f,M_f,T_int,N_1));
            % Store the needed frequency channel. NOTE: the cross-correlation
            % calculation starts with channel 5, so we have to subtract 4.
            output(jj,ii,:) =  tmp(:,fc-4);
        end
    end

    save(s,'output',save_format);
  else
    s = load(s);
    output = s.output;
  end;
    
  if flags.do_plot
    % ------ Plotting ------
    % Generate time axis
    tau = linspace(-1,1,ndl);
    % Plot figure for every c_s condition
    for jj = 1:length(c_s)
      figure;
      mesh(tau,itd(end:-1:1),squeeze(output(jj,:,:)));
      view(0,57);
      xlabel('correlation-time tau (ms)');
      ylabel('interaural time difference (ms)');
      set(gca,'YTick',0:0.2:1);
      set(gca,'YTickLabel',{'1','0.8','0.6','0.4','0.2','0'});
      tstr = sprintf('c_s = %.1f\nw_f = 0\nf = %i Hz\n',c_s(jj),f);
      title(tstr);
    end
  end;

end;


%% ------ FIG 7 -----------------------------------------------------------
if flags.do_fig7
    
    s = [mfilename('fullpath'),'_fig7.mat'];
  
    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0;
    M_f = 6; % not used, if w_f==0
    c_s = 0:0.2:1;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 21 ITD points between 0~ms and 1~ms
    nitds = 21; % number of used ITDs
    itd = linspace(0,1,nitds);
    
    if amtredofile(s,flags.redomode)
      
      output = zeros(length(c_s),nitds);
      for ii = 1:nitds 
        % Generate ITD shifted sinusoid
        sig = itdsin(f,itd(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation and apply an onset window
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation for different inhibition factor c_s 
        for jj = 1:length(c_s)
          % Calculate cross-correlation (and squeeze due to T_int==inf)
          tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f,M_f,T_int,N_1));
          % Store the needed frequency channel. NOTE: the cross-correlation
          % calculation starts with channel 5, so we have to subtract 4.
          cc = tmp(:,fc-4);
          % Calculate the position of the centroid
          output(jj,ii) = lindemann1986centroid(cc);
        end
      end

      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;
    
    if flags.do_plot
      % ------ Plotting ------
      figure;
      for jj = 1:length(c_s)
        plot(itd,output(jj,:));
        hold on;
      end
      xlabel('interaural time difference (ms)');
      ylabel('displacement of the centroid d');
      tstr = sprintf('w_f = 0\nf = %i Hz\n',f);
      title(tstr);
    end;
  
end;


%% ------ FIG 8 -----------------------------------------------------------
if flags.do_fig8
  
  s = [mfilename('fullpath'),'_fig8.mat'];
  
  % Sampling rate
  fs = 44100;
  % Frequency of the sinusoid
  f = 500;
  T = 1/f;
  fc = round(freqtoerb(f));   % corresponding frequency channel
  
  % Model parameter
  T_int = inf;
  w_f = 0;
  M_f = 6; % not used, if w_f==0
  c_s = [0.3,1];

  % NOTE: the longer the signal, the more time we need for computation. On the
  % other side N_1 needs to be long enough to eliminate any onset effects.
  % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
  % results for this demo.
  N_1 = ceil(25*T*fs);
  siglen = ceil(30*T*fs);
  
  % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
  nilds = 26; % number of used ILDs
  ndl = 2*round(fs/2000)+1;   % length of the delay line (see bincorr.m)
  ild = linspace(0,25,nilds);
  
  if amtredofile(s,flags.redomode)
    
    output = zeros(2,nilds,ndl);
    for ii = 1:nilds 
      % Generate sinusoid with given ILD
      sig = ildsin(f,ild(ii),fs);
      % Use only the beginning of the signal to generate only one time instance of
      % the cross-correlation and apply onset window
      sig = sig(1:siglen,:);
      sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
      % Calculate cross-correlation for different inhibition factor c_s 
      for jj = 1:length(c_s)
        % Calculate cross-correlation (and squeeze due to T_int==inf)
          tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f,M_f,T_int,N_1));
          % Store the needed frequency channel. NOTE: the cross-correlation
          % calculation starts with channel 5, so we have to subtract 4.
          output(jj,ii,:) = tmp(:,fc-4);
      end
    end
    
    save(s,'output',save_format);
  else
    s = load(s);
    output = s.output;
  end;
  
  if flags.do_plot
    % ------ Plotting ------
    % Generate time axis
    tau = linspace(-1,1,ndl);
    % Plot figure for every c_s condition
    for jj = 1:length(c_s) 
      figure;
      mesh(tau,ild(end:-1:1),squeeze(output(jj,:,:)));
      view(0,57);
      xlabel('correlation-time delay (ms)');
      ylabel('interaural level difference (dB)');
      set(gca,'YTick',0:5:25);
      set(gca,'YTickLabel',{'25','20','15','10','5','0'});
      tstr = sprintf('c_{inh} = %.1f\nw_f = 0\nf = %i Hz\n',c_s(jj),f);
      title(tstr);
    end
  end;
  
end;


%% ------ FIG 10 ----------------------------------------------------------
if flags.do_fig10

  s = [mfilename('fullpath'),'_fig10.mat'];

  % Sampling rate
  fs = 44100;
  % Frequency of the sinusoid
  f = 500;
  T = 1/f;
  fc = round(freqtoerb(f));   % corresponding frequency channel
  
  % Model parameter
  T_int = inf;
  w_f = 0.035;
  M_f = 6; % not used, if w_f==0
  c_s = 0.3;
  
  % NOTE: the longer the signal, the more time we need for computation. On the
  % other side N_1 needs to be long enough to eliminate any onset effects.
  % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
  % results for this demo.
  N_1 = ceil(25*T*fs);
  siglen = ceil(30*T*fs);
  
  % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
  nilds = 26; % number of used ILDs
  ndl = 2*round(fs/2000)+1;   % length of the delay line (see bincorr.m)
  ild = linspace(0,25,nilds);
  
  if amtredofile(s,flags.redomode)

    output = zeros(length(c_s),nilds,ndl);
    for ii = 1:nilds 
      % Generate sinusoid with given ILD
      sig = ildsin(f,ild(ii),fs);
      % Use only the beginning of the signal to generate only one time instance of
      % the cross-correlation and apply onset window
      sig = sig(1:siglen,:);
      sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
      % Calculate cross-correlation for different inhibition factor c_s 
      for jj = 1:length(c_s)
        % Calculate cross-correlation (and squeeze due to T_int==inf)
        tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f,M_f,T_int,N_1));
        % Store the needed frequency channel. NOTE: the cross-correlation
        % calculation starts with channel 5, so we have to subtract 4.
        output(jj,ii,:) = tmp(:,fc-4);
      end
    end
    
    save(s,'output',save_format);
  else
    s = load(s);
    output = s.output;
  end;
  
  
  % ------ Plotting ------
  if flags.do_plot
    % Generate time axis
    tau = linspace(-1,1,ndl);
    % Plot figure for every c_s condition
    for jj = 1:length(c_s)
      figure;
      mesh(tau,ild(end:-1:1),squeeze(output(jj,:,:)));
      view(0,57);
      xlabel('correlation-time delay (ms)');
      ylabel('interaural level difference (dB)');
      set(gca,'YTick',0:5:25);
      set(gca,'YTickLabel',{'25','20','15','10','5','0'});
      tstr = sprintf('c_{inh} = %.1f\nw_f = 0.035\nf = %i Hz\n',c_s(jj),f);
      title(tstr);
    end
  end;
  
end;


%% ------ FIG 11 ----------------------------------------------------------
if flags.do_fig11

  s = [mfilename('fullpath'),'_fig11.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = [0,0,0.035];
    M_f = 6; % not used, if w_f==0
    c_s = [0.3,1,0.3];

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Caelculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
    nilds = 26; % number of used ILDs
    ild = linspace(0,25,nilds);
    
      
    if amtredofile(s,flags.redomode)
      
      output = zeros(length(c_s),nilds);
      for ii = 1:nilds 
        % Generate sinusoid with given ILD
        sig = ildsin(f,ild(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation and apply onset window
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation for different inhibition factor c_s 
        for jj = 1:length(c_s)
          % Calculate cross-correlation (and squeeze due to T_int==inf)
          tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f(jj),M_f,T_int,N_1));
          % Store the needed frequency channel
          cc = tmp(:,fc-4);
          % Calculate the position of the centroid
          output(jj,ii) = lindemann1986centroid(cc);
        end
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;


    if flags.do_plot
      % ------ Plotting ------
      figure;
      % Plot data from experiments
      data = data_lindemann1986('fig11_yost');
      plot(data(:,1),data(:,2)*0.058,'+');
      hold on;
      data = data_lindemann1986('fig11_sayers');
      plot(data(:,1),data(:,2)*0.058,'*');
      % Plot line for every condition
      for jj = 1:length(c_s) 
        plot(ild,output(jj,:));
      end
      axis([0 25 0 0.8]);
      legend('500 Hz, Yost','600 Hz, Sayers','500 Hz, model');
      xlabel('interaural level difference (dB)');
      ylabel('displacement of the centroid d');
    end;

end;


%% ------ FIG 12 ----------------------------------------------------------
if flags.do_fig12

    s = [mfilename('fullpath'),'_fig12.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0.035;
    M_f = 6; % not used, if w_f==0
    c_s = 0.3;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
    nilds = 21; % number of used ILDs for the ILD only stimuli
    nitds = 21; % number of used ITDs for the combined stimuli
    ild = linspace(0,10,nilds);
    itd = linspace(-1,0,nitds);

    if amtredofile(s,flags.redomode)

    
      % Calculate the centroids for ILD+ITD stimuli
      cen = zeros(nitds,nilds);
      for ii = 1:nitds
        for jj = 1:nilds
          % Generate sinusoid with given ILD
          sig = itdildsin(f,itd(ii),ild(jj),fs);
          % Use only the beginning of the signal to generate only one time 
          % instance of the cross-correlation and apply a linear onset window
          sig = sig(1:siglen,:);
          sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
          % Calculate cross-correlation (and squeeze due to T_int==inf)
          tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
          % Store the needed frequency channel
          cc = tmp(:,fc-4);
          % Calculate the position of the centroid
          cen(ii,jj) = lindemann1986centroid(cc);
        end
      end
      
      
      % ------ Fiting ------
      % For every ITD find the ILD with gives a centroid near 0
      output = zeros(nitds,1);
      for ii = 1:nitds
        % Find centroid nearest to 0
        [val,idx] = min(abs(cen(ii,:)));
        output(ii) = ild(idx);
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;

    if flags.do_plot
      % ------ Plotting ------
      figure;
      data = data_lindemann1986('fig12_400');
      plot(data(:,1),data(:,2),'+');
      hold on;
      data = data_lindemann1986('fig12_600');
      plot(data(:,1),data(:,2),'*');
      plot(itd,output);
      axis([-1 0 0 10]);
      legend('400 Hz','600 Hz','500 Hz, model');
      xlabel('interaural time difference (ms)');
      ylabel('interaural level difference (dB)');
    end;

end;


%% ------ FIG 13 ----------------------------------------------------------
if flags.do_fig13

  s = [mfilename('fullpath'),'_fig13.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    N_1 = 1;
    w_f = 0.035;
    M_f = 6; % not used, if w_f==0
    c_s = 0.3;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
    nilds_p = 21; % number of used ILDs for the ILD only stimuli
    nitds_t = 21; % number of used ITDs for the combined stimuli
    nilds_t = 6;  % number of used ILDs for the combined stimuli
    ndl = 2*round(fs/2000)+1;     % length of the delay line (see bincorr.m)
    ild_p = linspace(-10,40,nilds_p);
    itd_t = linspace(-1,1,nitds_t);
    ild_t = [-3,0,3,9,15,25];

    if amtredofile(s,flags.redomode)
      
      % Calculate the centroids for the ILD only stimuli
      cen_p = zeros(1,nilds_p);
      for ii = 1:nilds_p
        % Generate sinusoid with given ILD
        sig = ildsin(f,ild_p(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation and apply a linear onset window
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation (and squeeze due to T_int==inf)
        tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
        % Store the needed frequency channel
        cc = tmp(:,fc-4);
        % Calculate the position of the centroid
        cen_p(ii) = lindemann1986centroid(cc);
      end
      
      % Calculate the centroids for the combined stimuli
      cen_t = zeros(nilds_t,nitds_t);
      for ii = 1:nitds_t
        for jj = 1:nilds_t
          sig = itdildsin(f,itd_t(ii),ild_t(jj),fs);
          sig = sig(1:siglen,:);
          sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
          tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
          cc = tmp(:,fc-4);
          cen_t(jj,ii) = lindemann1986centroid(cc);
        end
      end

      % ------ Fitting ------
      % For the results for the combined centroids find the nearest centroid for the
      % ILD only stimuli
      output = zeros(nilds_t,nitds_t);
      for ii = 1:nitds_t
        for jj = 1:nilds_t
          idx = findnearest(cen_p,cen_t(jj,ii));
          output(jj,ii) = ild_p(idx);
        end
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;
    
    if flags.do_plot
      % ------ Plotting ------
      % First plot the only data from experiments
      figure;
      d = data_lindemann1986('fig13');
      plot(d(:,1),d(:,2),'x-r', ...   % -3dB
           d(:,1),d(:,3),'x-b', ...   %  3dB
           d(:,1),d(:,4),'x-g', ...   %  9dB
           d(:,1),d(:,5),'x-b', ...   % 15dB
           d(:,1),d(:,6),'x-r')       % 25dB
      legend('25dB','15dB','9dB','3dB','-3dB');
      axis([-1 1 -10 40]);
      set(gca,'XTick',-1:0.4:1);
      xlabel('interaural time difference (ms)');
      ylabel('interaural level difference (dB)');
      % Then plot model results
      figure;
      % Plot line for every condition
      for jj = 1:nilds_t
        plot(itd_t,output(jj,:));
        hold on;
      end
      axis([-1 1 -10 40]);
      set(gca,'XTick',-1:0.4:1);
      xlabel('interaural time difference (ms)');
      ylabel('interaural level difference (dB)');
    end;

end;


%% ------ FIG 14a ---------------------------------------------------------
if flags.do_fig14a

  s = [mfilename('fullpath'),'_fig14a.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % --- FIG 14 (a) ---
    % Model parameter
    T_int = inf;
    w_f = 0;
    M_f = 6; % not used, if w_f==0
    c_s = [0.0,0.2,0.4,0.6,1.0];

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 21 ITD points between 0~ms and 1~ms
    nilds = 21; % number of used ITDs
    ild = linspace(-3,3,nilds);
    itd = 2000/f;
    
    if amtredofile(s,flags.redomode)
     
      output = zeros(length(c_s),nilds);
      for ii = 1:nilds 
        % Generate ITD shifted sinusoid
        sig = itdildsin(f,itd,ild(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation
        sig = sig(1:siglen,:);
        % Apply a linear onset window with length N_1/2 to minimize onset effects
        % (see lindemann1986 p. 1614)
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation for different inhibition factor c_s 
        for jj = 1:length(c_s)
          % Calculate cross-correlation (and squeeze due to T_int==inf)
          tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f,M_f,T_int,N_1));
          % Store the needed frequency channel. NOTE: the cross-correlation
          % calculation starts with channel 5, so we have to subtract 4.
            cc = tmp(:,fc-4);
            % Calculate the position of the centroid
            output(jj,ii) = lindemann1986centroid(cc);
        end
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;
    
    if flags.do_plot
      % ------ Plotting ------
      figure;
      for jj = 1:length(c_s)
        plot(ild,output(jj,:));
        hold on;
      end
      xlabel('interaural level difference (dB)');
      ylabel('displacement of the centroid d');
      tstr = sprintf('w_f = 0\nf = %i Hz\n',f);
      title(tstr);
    end;

end;


%% ------ FIG 14b ---------------------------------------------------------
if flags.do_fig14b

    s = [mfilename('fullpath'),'_fig14b.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0;
    M_f = 6; % not used, if w_f==0
    c_s = 1.0;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 21 ITD points between 0~ms and 1~ms
    nitds = 21; % number of used ITDS
    nilds = 201; % number of used ILDs
    itd = linspace(0,1,nitds);
    ild_std = [1,2,3,4,5];
    
    if amtredofile(s,flags.redomode)

      fprintf(1,'NOTE: this test function will need a lot of time!\n\n');

      output = zeros(length(ild_std)+1,nitds);
      centmp = zeros(nilds,nitds);
      for ii = 1:nitds
        % Show progress
        progressbar(ii,nitds);
        % First generate the result for std(ILD) == 0
        sig = itdsin(f,itd(ii),fs);
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
        cc = tmp(:,fc-4);
        cen(1,ii) = lindemann1986centroid(cc);
        % Generate results for std(ILD) ~= 0
        for nn = 1:length(ild_std)
          % Generate normal distributed ILDs with mean ~ 0 and std = 1
          tmp = randn(nilds,1);
          tmp = tmp/std(tmp);
          % Generate desired ILD distribution
          ild = tmp * ild_std(nn);
          % For all distributed ILD values calculate the centroid
          for jj = 1:nilds
            sig = itdildsin(f,itd(ii),ild(jj),fs);
            sig = sig(1:siglen,:);
            sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
            tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
            cc = tmp(:,fc-4);
            centmp(jj,ii) = lindemann1986centroid(cc);
          end
          % Calculate the mean centroid above the ILD distribution
          output(nn+1,ii) = mean(centmp(:,ii));
        end
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;

    if flags.do_plot
      figure;
      for nn = 1:length(ild_std)+1
        plot(itd,output(nn,:)); hold on;
      end
      axis([0 1 0 1]);
      xlabel('interaural level difference (dB)');
      ylabel('displacement of the centroid d');
      tstr = sprintf('w_f = 0\nc_{inh} = 1\nf = %i Hz\n',f);
      title(tstr);
    end;

end;


%% ------ FIG 15 ----------------------------------------------------------
if flags.do_fig15

  s = [mfilename('fullpath'),'_fig15.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0.035;
    M_f = 6; % not used, if w_f==0
    c_s = 0.3;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640 (200*T). Here I uses only N_1 = 2205 (25*T) 
    % which gives the same results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
    nilds = 26; % number of used ILDs
    ndl = 2*round(fs/2000)+1;   % length of the delay line (see bincorr.m)
    ild = linspace(0,25,nilds);
    itd = -0.5;
    
        
    if amtredofile(s,flags.redomode)

      output = zeros(length(c_s),nilds,ndl);
      for ii = 1:nilds 
        % Generate sinusoid with given ILD
        sig = itdildsin(f,itd,ild(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation and apply onset window
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation for different inhibition factor c_s 
        for jj = 1:length(c_s)
          % Calculate cross-correlation (and squeeze due to T_int==inf)
            tmp = squeeze(lindemann1986(sig,fs,c_s(jj),w_f,M_f,T_int,N_1));
            % Store the needed frequency channel. NOTE: the cross-correlation
            % calculation starts with channel 5, so we have to subtract 4.
            output(jj,ii,:) = tmp(:,fc-4);
        end
      end

      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;

    if flags.do_plot
      % ------ Plottinqg --------------------------------------------------------
      % Generate time axis
      tau = linspace(-1,1,ndl);
      % Plot figure for every c_s condition
      for jj = 1:length(c_s)
        figure;
        mesh(tau,ild(end:-1:1),squeeze(output(jj,:,:)));
        view(0,57);
        xlabel('correlation-time delay (ms)');
        ylabel('interaural level difference (dB)');
        set(gca,'YTick',0:5:25);
        set(gca,'YTickLabel',{'25','20','15','10','5','0'});
        tstr = sprintf('c_{inh} = %.1f\nw_f = 0.035\nf = %i Hz\n',c_s(jj),f);
        title(tstr);
      end
    end;

end;


%% ------ FIG 16 ---------------------------------------------------------
if flags.do_fig16

  
  s = [mfilename('fullpath'),'_fig16.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0.035;
    M_f = 6; % not used, if w_f==0
    c_s = 0.3;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
    nilds = 21; % number of used ILDs for the ILD only stimuli
    nitds = 21; % number of used ITDs for the combined stimuli
    ndl = 2*round(fs/2000)+1;     % length of the delay line (see bincorr.m)
    ild = linspace(0,10,nilds);
    itd = linspace(-1,0,nitds);

    if amtredofile(s,flags.redomode)
      
      % Calculate the centroids for ILD+ITD stimuli
      cc = zeros(nitds,nilds,ndl);
      for ii = 1:nitds
        for jj = 1:nilds
          % Generate sinusoid with given ILD
          sig = itdildsin(f,itd(ii),ild(jj),fs);
          % Use only the beginning of the signal to generate only one time 
          % instance of the cross-correlation and apply a linear onset window
          sig = sig(1:siglen,:);
          sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
          % Calculate cross-correlation (and squeeze due to T_int==inf)
          tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
          % Store the needed frequency channel
          cc(ii,jj,:) = tmp(:,fc-4);
        end
      end

      
      % ------ Fiting ------
      % For every ITD find the ILD with gives a centroid near 0
      output = zeros(nitds,1);
      for ii = 1:nitds
        % Find two peaks of same height
        idx = findpeaks(squeeze(cc(ii,:,:)));
        output(ii) = ild(idx);
      end

      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;
    
      
    if flags.do_plot
      % ------ Plotting ------
      figure;
      data = data_lindemann1986('fig16');
      plot(data(:,1),data(:,2),'+');
      hold on;
      plot(itd,output);
      axis([-1 0 0 15]);
      xlabel('interaural time difference (ms)');
      ylabel('interaural level difference (dB)');
    end;

end;


%% ------ FIG 17 ----------------------------------------------------------
if flags.do_fig17

  
  s = [mfilename('fullpath'),'_fig17.mat'];

    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0.035;
    M_f = 6; % not used, if w_f==0
    c_s = 0.3;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);
    siglen = ceil(30*T*fs);

    % Calculate crosscorrelations for 26 ILD points between 0~dB and 25~dB
    nitds_p = 21; % number of used ITDs for the ITD only stimuli
    nitds_t = 4; % number of used ITDs for the combined stimuli
    nilds_t = 21;  % number of used ILDs for the combined stimuli
    itd_p = linspace(-0.36,0.72,nitds_p);
    ild_t = linspace(-9,9,nilds_t);
    itd_t = [0,0.09,0.18,0.27];

    if amtredofile(s,flags.redomode)
      
      % Calculate the centroids for the ITD only stimuli
      cen_p = zeros(1,nitds_p);
      max_p = zeros(1,nitds_p);
      for ii = 1:nitds_p
        % Generate sinusoid with given ILD
        sig = itdsin(f,itd_p(ii),fs);
        % Use only the beginning of the signal to generate only one time instance of
        % the cross-correlation and apply a linear onset window
        sig = sig(1:siglen,:);
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation (and squeeze due to T_int==inf)
        tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
        % Store the needed frequency channel
        cc = tmp(:,fc-4);
        % Find the maximum position
        max_p(ii) = findmax(cc);
        % Calculate the position of the centroid
        cen_p(ii) = lindemann1986centroid(cc);
      end
      
      % Calculate the centroids for the combined stimuli
      cen_t = zeros(nitds_t,nilds_t);
      max_t = zeros(nitds_t,nilds_t);
      for ii = 1:nilds_t
        for jj = 1:nitds_t
          sig = itdildsin(f,itd_t(jj),ild_t(ii),fs);
          sig = sig(1:siglen,:);
          sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
          tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
          cc = tmp(:,fc-4);
          max_t(jj,ii) = findmax(cc);
          cen_t(jj,ii) = lindemann1986centroid(cc);
        end
      end
      
      % ------ Fiting ------
      % For the results for the combined centroids find the nearest centroid for the
      % ITD only stimuli
      output.rmax = zeros(nitds_t,nilds_t);
      output.rcen = output.rmax;
      for ii = 1:nilds_t
        for jj = 1:nitds_t
          idx = findnearest(cen_p,cen_t(jj,ii));
          output.rcen(jj,ii) = itd_p(idx);
          idx = findnearest(max_p,max_t(jj,ii));
          output.rmax(jj,ii) = itd_p(idx);
        end
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;
    
      
    if flags.do_plot
      % ------ Plotting ------
      % First plot the only data from experiments
      figure; % fig 17 (a)
      d = data_lindemann1986('fig17');
      plot(d(:,1),d(:,5),'x-r', ...   %  0 ms
           d(:,1),d(:,4),'x-b', ...   %  0.09 ms
           d(:,1),d(:,3),'x-g', ...   %  0.18 ms
           d(:,1),d(:,2),'x-b')       %  0.27 ms
      legend('0.27 ms','0.18 ms','0.09 ms','0 ms');
      axis([-9 9 -0.36 0.72]);
      set(gca,'XTick',-9:3:9);
      xlabel('interaural level difference (dB)');
      ylabel('interaural time difference (ms)');
      % Then plot model results
      figure; % fig 17 (b)
              % Plot line for every condition
      for jj = 1:nitds_t
        plot(ild_t,output.rcen(jj,:));
        hold on;
      end
      axis([-9 9 -0.36 0.72]);
      set(gca,'XTick',-9:3:9);
      xlabel('interaural level difference (dB)');
      ylabel('interaural time difference (ms)');
      %
      figure; % fig 17 (c)
      for jj = 1:nitds_t
        plot(ild_t,output.rmax(jj,:));
        hold on;
      end
      axis([-9 9 -0.36 0.72]);
      set(gca,'XTick',-9:3:9);
      xlabel('interaural level difference (dB)');
      ylabel('interaural time difference (ms)');
    end;

end;


%% ------ FIG 18 ----------------------------------------------------------
if flags.do_fig18

  
  s = [mfilename('fullpath'),'_fig18.mat'];

  
    % Sampling rate
    fs = 44100;
    % Frequency of the sinusoid
    f = 500;
    T = 1/f;
    fc = round(freqtoerb(f));   % corresponding frequency channel

    % Model parameter
    T_int = inf;
    w_f = 0.035;
    M_f = 6; % not used, if w_f==0
    c_s = 0.11;

    % NOTE: the longer the signal, the more time we need for computation. On the
    % other side N_1 needs to be long enough to eliminate any onset effects.
    % Lindemann uses N_1 = 17640. Here I uses only N_1 = 2205 which gives the same
    % results for this demo.
    N_1 = ceil(25*T*fs);

    % Calculate crosscorrelations for 21 ITD points between 0~ms and 1~ms
    niacs = 11; % number of used interaural coherence values
    ndl = 2*round(fs/2000)+1;   % length of the delay line (see bincorr.m)
    iac = linspace(0,1,niacs);
    
    if amtredofile(s,flags.redomode)

      output = zeros(niacs,ndl);
      for ii = 1:niacs; 
        % Generate ITD shifted sinusoid
        sig = bincorrnoise(fs,iac(ii),'pink');
        % Aplly onset window
        sig = rampsignal(sig,[round(N_1/2)-1 0],'tria');
        % Calculate cross-correlation (and squeeze due to T_int==inf)
        tmp = squeeze(lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1));
        % Store the needed frequency channel. NOTE: the cross-correlation
        % calculation starts with channel 5, so we have to subtract 4.
        output(ii,:) =  tmp(:,fc-4);
      end
      
      save(s,'output',save_format);
    else
      s = load(s);
      output = s.output;
    end;

    if flags.do_plot
      % ------ Plotting ------
      % Generate time axis
      tau = linspace(-1,1,ndl);
      % Plot figure for every c_s condition
      figure;
      mesh(tau,iac,output);
      view(0,57);
      xlabel('correlation-time tau (ms)');
      ylabel('degree of interaural coherence');
    end;

end;


%% ------ Subfunctions ----------------------------------------------------
function idx = findnearest(list,val)
[dif,idx] = min(abs(list-val));

function idx = findpeaks(cc)
% FINDPEAKS Finds two peaks of the same height in a given cross-correlation
h = zeros(size(cc,1),1);
for ii = 1:size(cc,1)
    % Find a peak in the two halfes of the cross-correlation and subtract them
    h(ii) = max(cc(ii,1:30)) - max(cc(ii,31:end));
end
% Find the index with the smallest distance between the two peaks
[val,idx] = min(abs(h));

function m = findmax(list)
[m,idx] = max(list);
d = linspace(-1,1,length(list));
m = d(idx);