THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

CQDFT - FFT-based filter bank with constant relative bandwidth according

Program code:

function [cqmag,fc,cqmaghr,fvec] = cqdft( insig,varargin )
%CQDFT FFT-based filter bank with constant relative bandwidth according
%   Usage:  [cqmag] = cqdft( insig )
%           [cqmag,fc,cqmaghr,fvec] = cqdft( insig,fs,flow,fhigh,bw )
%
%   Input parameters:
%      insig   : Impulse response or complex spectrum
%      fs      : Sampling rate, default is 48kHz.
%      flow    : Lowest frequency, minimum: 0.5kHz, default is 2kHz
%      fhigh   : Highest frequency, default is, default is 16kHz  
%      bw      : bandwidth, possible values 3,6,9,12, default is 6.
%
%   Output parameters:
%      cqmag   : mean magnitudes of CQ-bands in dB
%      fc      : center frequencies of bands (geo. mean of corners)
%      cqmaghr : same as cqmag but for all freq. bins (high resolution)
%      fvec    : freq. vector according to FFT-resolution
%
%   `cqdft(insig)` approximates a constant-Q filter bank by averaging the
%   magnitude bins of a DFT. `cqdft` results in 'bw' dB-magnitudes per octave.
%
%   References: langendijk2002contribution
    
% AUTHOR : Robert Baumgartner, OEAW Acoustical Research Institute

definput.keyvals.fs=48000;
definput.keyvals.flow=2000;
definput.keyvals.fhigh=16000;
definput.keyvals.bw=6;

[flags,kv]  = ltfatarghelper({'fs','flow','fhigh','bw'},definput,varargin);


% input signal given in time or frequency domain?
if isreal(insig)    % -> TD
    nfft = 2^12;%max(2^12,size(insig,1));
    y = abs(fft(insig,nfft));
else                % -> FD
    y = abs(insig);
    nfft = size(insig,1);
end
fvec = 0:kv.fs/nfft:kv.fs-kv.fs/nfft;

octs = log2(kv.fhigh/kv.flow);    % # of octaves
jj = 0:octs*kv.bw; 
n = round(2.^((jj)/kv.bw)*kv.flow/kv.fs*nfft);       % startbins
fc = zeros(length(jj)-1,1);                       % center frequencies
cqmag = zeros(length(jj)-1,size(y,2),size(y,3));  % mean magnitudes of CQ-bands
cqmaghr = zeros(size(y));                         % same but for all freq. bins (high resolution)
for ind = jj(1)+1:jj(end)
    nj = n(ind+1)-n(ind);
    idn = n(ind):n(ind+1)-1;
    fc(ind) = geomean(fvec(n(ind:ind+1)));
    cqmag(ind,:,:) = sqrt(1/(nj)*sum(y(idn,:,:).^2,1));
    cqmaghr(idn,:,:) = repmat(cqmag(ind,:,:),[length(idn),1,1]);
end

cqmag = 20*log10(cqmag);
cqmaghr(nfft/2+2:end,:,:) = cqmaghr(nfft/2:-1:2,:,:);
cqmaghr = 20*log10(cqmaghr);

end