This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function filter = gfb_filter_new(arg1,arg2,arg3,arg4,arg5)
%GFB_FILTER_NEW Constructor of a cascaded gammatonefilter
% Usage: gfb_filter_new(a_tilde,gamma_filter_order);
% gfb_filter_new(fs,fc,gamma_filter_order,bandwidth_factor);
% gfb_filter_new(fs,fc,bw,attenuation_db,gamma_filter_order);
%
% Input arguments:
% a_tilde : Complex filter constant
% gamma_filter_order : Gammatone filter order
% fs : Sampling rate
% fc : Centre frequency
% a_tilde : Complex filter constant
% bandwidth_factor : Bandwidth factor, default value is 1.0
% bw : Filter bandwidth (in Hz)
%
% `gfb_filter_new(a_tilde,gamma_filter_order)` specifies the complex
% filter coefficients directly.
%
% `gfb_filter_new(fs,fc,gamma_filter_order,bandwidth_factor)` computes
% filter coefficient from sampling rate, center frequency, and order of
% the gammatone filter. The filters will have 1 ERB equivalent
% rectangular bandwidth, times bandwidth_factor. Filter coefficient are
% computed from equations (13),(14)[Hohmann 2002].
%
% `gfb_filter_new(fs,fc,bw,attenuation_db,gamma_filter_order)` Computes
% the filter coefficients from the sampling rate, center frequency, the
% desired bandwidth with respect to the given attenuation, and the order
% of the gammatone filter. Filter coefficient are computed as in equations
% (11),(12)[Hohmann 2002] (section 2.3).
%
% References: hohmann2002frequency
% AUTHOR: tp
filter.type = 'gfb_Filter';
if (nargin == 2)
filter.coefficient = arg1;
filter.gamma_order = arg2;
elseif (nargin == 3) || (nargin == 4)
fs = arg1;
fc = arg2;
filter.gamma_order = arg3;
bandwidth_factor = 1.0;
if (nargin == 4)
bandwidth_factor = arg4;
end
global GFB_L;
global GFB_Q;
gfb_set_constants;
% equation (13) [Hohmann 2002]:
audiological_erb = (GFB_L + fc / GFB_Q) * bandwidth_factor;
% equation (14), line 3 [Hohmann 2002]:
a_gamma = (pi * factorial(2*filter.gamma_order - 2) * ...
2 ^ -(2*filter.gamma_order - 2) / ...
factorial(filter.gamma_order - 1) ^ 2);
% equation (14), line 2 [Hohmann 2002]:
b = audiological_erb / a_gamma;
% equation (14), line 1 [Hohmann 2002]:
lambda = exp(-2 * pi * b / fs);
% equation (10) [Hohmann 2002]:
beta = 2 * pi * fc / fs;
% equation (1), line 2 [Hohmann 2002]:
filter.coefficient = lambda * exp(1i * beta);
elseif (nargin == 5)
fs = arg1;
fc = arg2;
bw = arg3;
attenuation_db = arg4;
filter.gamma_order = arg5;
% equation (12), line 4 [Hohmann 2002]:
phi = pi * bw / fs;
% equation (12), line 3 [Hohmann 2002]:
u = -attenuation_db/filter.gamma_order;
% equation (12), line 2 [Hohmann 2002]:
p = (-2 + 2 * 10^(u/10) * cos(phi)) / (1 - 10^(u/10));
% equation (12), line 1 [Hohmann 2002]:
lambda = -p/2 - sqrt(p*p/4 - 1);
% equation (10) [Hohmann 2002]:
beta = 2*pi*fc/fs;
% equation (1), line 2 [Hohmann 2002]:
filter.coefficient = lambda * exp(1i*beta);
else
error ('gfb_filter_new needs either 2, 3, 4 or 5 arguments');
end
% normalization factor from section 2.2 (text) [Hohmann 2002]:
filter.normalization_factor = ...
2 * (1 - abs(filter.coefficient)) ^ filter.gamma_order;
filter.state = zeros(1, filter.gamma_order);