THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

ITD2ANGLELOOKUPTABLE - generates an ITD-azimuth lookup table for the given HRTF set

Program code:

function lookup = itd2anglelookuptable(irs,varargin)
%ITD2ANGLELOOKUPTABLE generates an ITD-azimuth lookup table for the given HRTF set
%   Usage: lookup = itd2anglelookuptable(irs,fs,model);
%          lookup = itd2anglelookuptable(irs,fs);
%          lookup = itd2anglelookuptable(irs);
%
%   Input parameters:
%       irs    : HRTF data set (at the moment only TU Berlin irs format)
%       fs     : sampling rate, (default: 44100) / Hz
%       model  : binaural model to use:
%                   'dietz2011' uses the Dietz binaural model (default)
%                   'lindemann1986' uses the Lindemann binaural model
%
%   Output parameters:
%       lookup : struct containing the polinomial fitting data for the
%                ITD -> azimuth transformation, p,MU,S, see help polyfit
%
%   `itd2anglelookuptable(irs)` creates a lookup table from the given IR data
%   set. This lookup table can be used by the dietz2011 or lindemann1986 binaural
%   models to predict the perceived direction of arrival of an auditory event.
%   The azimuth angle is stored in degree in the lookup table.
%
%   For the handling of the HRTF file format this function depends on the
%   Sound-Field-Synthesis Toolbox, which is available here:
%   http://github.com/sfstoolbox/sfs. It runs under Matlab and Octave. The
%   revision used to genrate the figures in the corressponding paper is
%   a8914700a4.
%
%   See also: dietz2011, lindemann1986, wierstorf2013
%
%   References: dietz2011auditory wierstorf2013 wierstorf2011hrtf

% AUTHOR: Hagen Wierstorf


%% ===== Checking of input parameters ===================================
nargmin = 1;
nargmax = 3;
error(nargchk(nargmin,nargmax,nargin));

definput.flags.model = {'dietz2011','lindemann1986'};
definput.keyvals.fs = 44100;
[flags,kv]=ltfatarghelper({'fs'},definput,varargin);


%% ===== Configuration ==================================================
% Samplingrate
fs = kv.fs;
% time of noise used for the calculation (samples)
nsamples = fs;
% noise type to use
noise_type = 'white';


%% ===== Calculation ====================================================
% generate noise signal
sig_noise = noise(nsamples,1,noise_type);
% get only the -90 to 90 degree part of the irs set
idx = (( irs.apparent_azimuth>-pi/2 & irs.apparent_azimuth<pi/2 & ...
    irs.apparent_elevation==0 ));
irs = slice_irs(irs,idx);
% iterate over azimuth angles
nangles = length(irs.apparent_azimuth);
% create an empty mod_itd, because the lindemann model didn't use it
mod_itd = [];

if flags.do_dietz2011

    itd = zeros(nangles,12);
    mod_itd = zeros(nangles,23);
    ild = zeros(nangles,23);
    for ii = 1:nangles
        % generate noise coming from the given direction
        ir = get_ir(irs,[irs.apparent_azimuth(ii) 0 irs.distance]);
        sig = auralize_ir(ir,sig_noise);
        % calculate binaural parameters
        [fine, modulation, cfreqs, ild_tmp] = dietz2011(sig,fs);
        % unwrap ITD
        itd_tmp = dietz2011unwrapitd(fine.itd(:,1:12),ild_tmp(:,1:12),fine.f_inst,2.5);
        % calculate the mean about time of the binaural parameters and store
        % them
        itd(ii,:) = median(itd_tmp,1);
        mod_itd(ii,:) = median(modulation.itd,1);
        ild(ii,:) = median(ild_tmp,1);
    end

elseif flags.do_lindemann1986

    itd = zeros(nangles,36);
    ild = zeros(nangles,36);
    for ii = 1:nangles
        % generate noise coming from the given direction
        ir = get_ir(irs,irs.apparent_azimuth(ii));
        sig = auralize_ir(ir,sig_noise);
        % Ten fold upsampling to have a smoother output
        %sig = resample(sig,10*fs,fs);
        % calculate binaural parameters
        c_s = 0.3; % stationary inhibition
        w_f = 0; % monaural sensitivity
        M_f = 6; % decrease of monaural sensitivity
        T_int = inf; % integration time
        N_1 = 17640; % sample at which first cross-correlation is calculated
        [cc_tmp,dummy,ild(ii,:),cfreqs] = lindemann1986(sig,fs,c_s,w_f,M_f,T_int,N_1);
        clear dummy;
        cc_tmp = squeeze(cc_tmp);
        % Calculate tau (delay line time) axes
        tau = linspace(-1,1,size(cc_tmp,1));
        % find max in cc
        for jj = 1:size(cc_tmp,2)
            [v,idx] = max(cc_tmp(:,jj));
            itd(ii,jj) = tau(idx)/1000;
        end
    end

end

% Fit the lookup data
for n = 1:12
    [p(:,n),S{n},MU(:,n)] = polyfit(itd(:,n),irs.apparent_azimuth'./pi*180,12);
end
% Create lookup struct
lookup.p = p;
lookup.MU = MU;
lookup.S = S;