This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function inoutsig = adaptloop(inoutsig,fs,varargin);
%ADAPTLOOP Adaptation loops
% Usage: outsig = adaptloop(insig,fs,limit,minlvl,tau);
% outsig = adaptloop(insig,fs,limit,minlvl);
% outsig = adaptloop(insig,fs,limit);
% outsig = adaptloop(insig,fs);
%
% `adaptloop(insig,fs,limit,minlvl,tau)` applies non-linear adaptation to an
% input signal *insig* sampled at a sampling frequency of *fs* Hz. *limit* is
% used to limit the overshoot of the output, *minlvl* determines the lowest
% audible threshhold of the signal (in dB SPL) and *tau* are time constants
% involved in the adaptation loops. The number of adaptation loops is
% determined by the length of *tau*.
%
% `adaptloop(insig,fs,limit,minlvl)` does as above, but uses the values for
% tau determined in Dau. et al (1996a).
%
% `adaptloop(insig,fs,limit)` does as above with a minimum threshhold *minlvl*
% equal to 0 dB SPL.
%
% `adaptloop(insig,fs)` does as above with an overshoot limit of $limit=10$.
%
% `adaptloop` takes the following flags at the end of the line of input
% arguments:
%
% 'adt_dau' Choose the parameters as in the Dau 1996 and 1997
% models. This consists of 5 adaptation loops with
% an overshoot limit of 10 and a minimum level of
% 1e-5. This is a correction in regard to the model
% described in Dau et al. (1996a), which did not use
% overshoot limiting. The adaptation loops have an
% exponential spacing. This flag is the default.
%
% 'adt_puschel' Choose the parameters as in the original Puschel 1988
% model. This consists of 5 adaptation loops without
% overshoot limiting. The adapation loops have a linear spacing.
%
% 'adt_breebaart' As `'puschel'`, but with overshoot limiting.
%
% 'dim',d Do the computation along dimension *d* of the input.
%
% See also: auditoryfilterbank, drnl
%
% Demos: demo_adaptloop
%
% References: puschel1988pza dau1996qmeI breebaart2001a
% Copyright (c) 1999 - 2004 Stephan Ewert. All rights reserved.
% AUTHOR : Stephan Ewert, Morten L. Jepsen, Peter L. Søndergaard
% ------ Checking of input parameters and default parameters ---------
if nargin<2
error('Too few input parameters.');
end;
definput.import = {'adaptloop'};
definput.keyvals.dim=[];
[flags,keyvals,limit,minlvl_db,tau] = ltfatarghelper({'limit','minlvl','tau'},definput,varargin);
% Convert minlvl from dB SPL to numerical value
minlvl=setdbspl(minlvl_db);
if ~isnumeric(tau) || ~isvector(tau) || any(tau<=0)
error('%s: tau must be a vector with positive values.',upper(mfilename));
end;
if ~isnumeric(minlvl) || ~isscalar(minlvl) || minlvl<=0
error('%s: minlvl must be a positive scalar.',upper(mfilename));
end;
if ~isnumeric(limit) || ~isscalar(limit)
error('%s: "limit" must be a scalar.',upper(mfilename));
end;
% -------- Computation ------------------
[inoutsig,siglen,dummy,nsigs,dim,permutedsize,order]=assert_sigreshape_pre(inoutsig,[],keyvals.dim, ...
upper(mfilename));
% The current implementation of the adaptation loops works with
% dboffset=100, so we must change to this setting.
% The output is always the same, so there is no need for changing back.
% Obtain the dboffset currently used.
dboffset=dbspl(1);
% Switch the minimum level and signal to the correct scaling.
minlvl=gaindb(minlvl,dboffset-100);
inoutsig=gaindb(inoutsig,dboffset-100);
inoutsig=comp_adaptloop(inoutsig,fs,limit,minlvl,tau);
inoutsig=assert_sigreshape_post(inoutsig,dim,permutedsize,order);