This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function pmv = langendijk2002(targets,template,varargin)
%LANGENDIJK2002 Localization model according to Langendijk et al. (2002)
% Usage: pmv = langendijk2002(targets,template)
% pmv = langendijk2002(targets,template,fs,bw,s,do,flow,fhigh)
%
% Input parameters:
% targets : head-related impulse responses (HRIRs) of target sounds
% (sorted acc. ascending polar angle)
% template : HRIRs of template
%
% Output parameters:
% pmv : Predicted probability mass vectors (PMVs) of polar response
% angles as a function of the polar target angle.
%
% `langendijk2002(targets,template,... )` results to a two dimensional matrix p. The
% first dimension represents all possible response positions in
% increasing order and the second dimension all possible target
% respectively source positions. Consequently each column represents the
% predicted probability mass vector (PMV) of the polar response angle
% distribution for one special target position. If you want to plot this
% prediction matrix use |plotlangendijk2002|.
%
% `langendijk2002` accepts the following optional parameters.
%
% 'fs',fs Sampling rate of the head-related impulse responses.
%
% 'bw',bw Bandwidth of filter bands as partial of an octave. The
% default value is 6.
%
% 'do',do Differential order. The default value is 0.
%
% 's',s Standard deviation of transforming Gaussian
% function; default value is 2.
%
% 'flow',flow Lower cutoff frequency of filter bank. min: 0,5kHz; default: 2kHz
%
% 'fhigh',fhigh Upper cutoff frequency of filter bank; default: 16kHz
%
% `langendijk2002` accepts the following flags.
%
% 'std' Apply Gaussian transformed standard deviation of
% inter-spectral differences for comparison process.
% This is the default.
%
% 'xcorr' Apply crosscorrelation for comparison process.
%
% See also: plotlangendijk2002
%
% References: langendijk2002contribution
% AUTHOR : Robert Baumgartner, OEAW Acoustical Research Institute
definput.import={'langendijk2002comp'};
definput.keyvals.bw=6;
definput.keyvals.flow=2000;
definput.keyvals.fhigh=16000;
definput.keyvals.stim=[];
definput.keyvals.fs=48000;
[flags,kv]=ltfatarghelper({'fs','bw','s','do','flow','fhigh'},definput,varargin);
% Stimulus (not considered in original model)
if not(isempty(kv.stim))
tmp = convolve(kv.stim,targets);
targets = reshape(tmp,[size(tmp,1),size(targets,2),size(targets,3)]);
end
% Filter bank
x = cqdft(targets,kv.fs,kv.flow,kv.fhigh,kv.bw);
y = cqdft(template,kv.fs,kv.flow,kv.fhigh,kv.bw);
% Comparison process
si=zeros(size(template,2),size(targets,2),size(template,3)); % initialisation
for ii=1:size(targets,2)
si(:,ii,:) = langendijk2002comp(x(:,ii,:),y,'argimport',flags,kv);
end
% Binaural average
si = mean(si,3);
% Normalization to PMV
pmv = si ./ repmat(sum(si),size(si,1),1);
end