This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [waveVamp, waveVlat] = roenne2012(stim,fsstim,stim_level,varargin)
%ROENNE2012 Simulates an ABR to any given stimulus
% Usage: [waveVamp, waveVlat] = roenne2012(flag)
%
% Output parameters:
% waveVamp : Amplitude of simulated ABR wave V.
% waveVlat : Latency of simulated ABR wave V peak.
%
% `roenne2012(stim,fsstim,stim_level)` returns simulated ABR wave V
% latency and amplitude. The stimulus *stim* must be defined in pascals
% and calibrated so a pure tone stimulus has an RMS value of 1. Transient
% stimuli (which this model is designed to simulate) has to be calibrated
% in peSPL acoustically. This is **not** the same as "just" having a
% numerical peak to peak value of the same level as the pure tone. For
% calibrated click, chirps and tone bursts, see |roenne2012click|,
% |roenne2012tonebursts| and |roenne2012chirp|.
%
% The parameter *fsstim* gives the sampling frequency of the input
% stimulus, and *stim_level* the level. As input is calibrated to an
% RMS-value of 1, a stimulus level in (pe)SPL has to be set.
%
% The flag may be one of:
%
% 'plot' Plot the output. See |plotroenne2012|.
%
% 'noplot' Do not plot. This is the default.
%
% 'fsmod',fsmod Auditory nerve model sampling frequency.
% Default value is 200000.
%
% 'flow',flow Auditory nerve model lowest center frequency.
% Default value is 100 Hz.
%
% 'fhigh',fhigh Auditory nerve model highest center frequency.
% Default value is 16000 Hz.
%
% 'min_modellength',mn
% Minimum length of modelling measured in ms.
% Default value is 40.
%
% Examples:
% ---------
%
% Simulates a click evoked ABR (c0 of the loaded file is a click). Note
% that the click loaded in this example starts after 15ms. The simulated
% wave V latency is thus also 15 ms "late" :::
%
% stim=data_elberling2010('stim');
% roenne2012(stim.c0,30e3,60,'plot')
%
% ---------
%
% Please cite Rønne et al. (2012) and Zilany and Bruce (2007) if you use
% this model.
%
% References: roenne2012modeling elberling2010evaluating zilany2007representation
% Define input flags
definput.flags.plot = {'plot','noplot'};
definput.keyvals.fsmod=200000;
definput.keyvals.flow = 100;
definput.keyvals.fhigh = 16000;
definput.keyvals.min_modellength=40;
[flags,kv] = ltfatarghelper({},definput,varargin);
%% Init
[ur,fs] = data_roenne2012;
% Assure minimum model length of 40ms
if length(stim)/fsstim < kv.min_modellength/1000
stim_temp = zeros(1, fsstim*kv.min_modellength/1000);
stim_temp(1:length(stim)) = stim;
stim = stim_temp;
end
%% ABR model
% call AN model, note that lots of extra outputs are possible
[ANout,vFreq] = zilany2007humanized(stim_level, stim, fsstim, kv.fsmod, 'flow',kv.flow, 'fhigh',kv.fhigh);
% subtract 50 due to spontaneous rate
ANout = ANout'-50;
% Sum in time across fibers, summed activity pattern
ANsum1 = sum(ANout,2);
% Downsample ANsum to get fs = fs_UR = 32kHz
ANsum = resample(ANsum1,fs,kv.fsmod);
% Simulated potential = UR * ANsum (* = convolution)
simpot = filter(ur,1,ANsum);
% Find max peak value (wave V)
maxpeak = max(simpot);
% Find corresponding time of max peak value (latency of wave V). The unit
% is [ms].
waveVlat = find(simpot == maxpeak)/fs*1000;
% find minimum in the interval from "max peak" to 6.7 ms later
minpeak = min(simpot(find(simpot == max(simpot)):...
find(simpot == max(simpot))+200));
% Calculate wave V amplitude, as the difference between the peak and the
% dip, in [\mu p] (micro pascals).
waveVamp = (maxpeak-minpeak);
if flags.do_plot
plotroenne2012(stim_level,waveVamp, waveVlat, simpot, ANout, 'flow',kv.flow, 'fhigh', kv.fhigh);
end