THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

BINCORRNOISE - Binaurally correlated noise

Program code:

function outsig = bincorrnoise(siglen,coher,varargin)
% BINCORRNOISE  Binaurally correlated noise
%   Usage: outsig = bincorrnoise(siglen,coher)
%
%   Input parameters:
%       siglen    : Number of samples of outsig
%       coher     : Interaural coherence of the produced signal.
%
%   Output parameters:
%       outsig    : $nsig \times 2$ correlated noise signal
%
%   `bincorrnoise(siglen,coher)` will generate a interaurally correlated noise signal 
%   with coherence *coher*. The output is a 2 column matrix of length *siglen*.
%
%   `bincorrnoise(siglen,coher,...)` will pass all additional parameters
%   onto the `noise` function to select between different types of stochastic
%   noise.

%   AUTHOR: Hagen Wierstorf


% ------ Checking of input parameters ------------------------------------

if nargin<2
  error('%s: Too few input parameters.',upper(mfilename));
end;

if ( ~isnumeric(siglen) || ~isscalar(siglen) || siglen<0 )
    error('%s: siglen has to be a positive scalar.',upper(mfilename));
end

if ( ~isnumeric(coher) || ~isscalar(coher) || coher<0)
    error('%s: coher has to be a positive scalar.',upper(mfilename));
end


% ------ Computation -----------------------------------------------------

% Generate correlation matrix
R = [1 coher; coher 1];
% Eigen decomposition
[V,D] = eig(R);

% Form correlating filter
W = V*sqrt(D);

% Generate uncorrelated noise
n = noise(siglen,2,varargin{:});

% Correlate the noise
outsig = n * W';