This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function outsig = notchednoise(fc,fs,dur,L,bw,delta)
%NOTCHEDNOISE Generates a notched-noise-type masker
% Usage: outsig = notchednoise(fs,fc,dur,L,bw,delta);
% outsig = notchednoise(fs,fc,dur,L,bw,[deltaL deltaR]);
%
% `outsig = notchednoise(fs,fc,dur,L,bw,delta)` generates a notched-noise
% masker with duration `dur` (in sec) and overall level `L` (in dB SPL)
% with a sampling rate of `fs` Hz. The deviation from center frequency
% `fc` is symmetric and is given by `delta` such that the stopband is
% `[fc-delta*fc fc+delta*fc]`. The left and right noise bands have a
% bandwidth of `bw*fc` in Hz. If `delta=0` then a broadband noise is
% returned.
%
% `outsig = notchednoise(fs,fc,dur,L,bw,[deltaL deltaR])` generates a
% notched-noise masker with an asymmetric configuration. `deltaL` and
% `deltaR` denote the left and right deviations from `fc`, respectively.
% In this case the stopband is `[fc-deltaL*fc fc+deltaR*fc]`.
%
% This notched-noise-type masker was used in psychoacoustical studies
% investigating the auditory filters' shape (the original method is
% described in Patterson, 1974). The noise is composed of two noise bands
% of width `bw` and a stopband centered at `fc` with a deviation from `fc`
% given by `delta`.
%
% Examples:
% ---------
%
% The following shows the spectrum and a spectogram of a typical notched
% noise masker used in the Patterson study:::
%
% fc = 4000;
% fs = 16000;
% dur = 1;
% L = 100;
% bw = .5;
% delta = .2;
% outsig = notchednoise(fc,fs,dur,L,bw,delta);
%
% figure(1);
% plotfftreal(fftreal(outsig),fs,100);
%
% figure(2);
% sgram(outsig,fs,80);
%
% References: patterson1974auditory moore1990auditory
if nargin<6
error('%s: Too few input parameters.',upper(mfilename));
end;
if ~isnumeric(delta) || ~isempty(find(delta<0,1))
error('%s: delta must be a positive scalar or array.',upper(mfilename));
end;
%% Generate broadband Gaussian noise
% Make sure the length is even
n = round(dur*fs/2)*2;
noise = randn(n,1);
n_ramp = round(10E-3*fs);% Default = 10-ms Hanning on/off ramps
noise = rampsignal(noise,n_ramp);
%ramp = hann(n_ramp);
% Apply temporal windowing
%noise(1:n_ramp/2) = noise(1:n_ramp/2).*ramp(1:end/2)';% Onset
%noise(end-n_ramp/2+1:end) = noise(end-n_ramp/2+1:end).*ramp(end/2+1:end)';% Offset
% Zero padding to account for FIR delay (l = IR length)
l = 1024;% Length of filter impulse response
noiseZP = [zeros(l,1); noise; zeros(l,1)];
% Set overall level in dB SPL
noiseZP = setdbspl(noiseZP,L);
%% If delta = 0 then filter is not required
if isscalar(delta) && delta == 0
outsig = noiseZP;
end
%% Multiband filter design (FIR filter)
if isscalar(delta) && delta > 0
% Symmetric notch
b1l = ((fc*(1-delta-bw))*2)/fs;% Low edge of left noise band
if b1l < 0
b1l = 0;
end
b1h = ((fc*(1-delta))*2)/fs;% High edge of left noise band
b2l = ((fc*(1+delta))*2)/fs;% Low edge of right noise band
b2h = ((fc*(1+delta+bw))*2)/fs;% High edge of right noise band
if b2h > 1
b2h = 1;
end
% Compute and analyze filter
f = [0 b1l b1l b1h b1h b2l b2l b2h b2h 1];
m = [0 0 1 1 0 0 1 1 0 0];
b = firls(l,f,m);
% Plot for verification (uncomment if needed)
% [h,w] = freqz(b,1,1024);
% figure
% plot(f,m,w/pi,abs(h),'--'),grid on
% xlabel('Normalized frequency'), ylabel('Magnitude'), title('Filter response')
% Apply filter:
outsig = filter(b,1,noiseZP);
elseif ~isscalar(delta)
if length(delta) > 2
error('%s: Stopband is not correctly specified.',upper(mfilename));
end
% Asymmetric notch
b1l = ((fc*(1-delta(1)-bw))*2)/fs;% Low edge of left noise band
if b1l < 0
b1l = 0;
end
b1h = ((fc*(1-delta(1)))*2)/fs;% High edge of left noise band
b2l = ((fc*(1+delta(2)))*2)/fs;% Low edge of right noise band
b2h = ((fc*(1+delta(2)+bw))*2)/fs;% High edge of right noise band
if b2h > 1
b2h = 1;
end
% Compute and analyze filter
f = [0 b1l b1l b1h b1h b2l b2l b2h b2h 1];
m = [0 0 1 1 0 0 1 1 0 0];
b = firls(l,f,m);
% Plot for verification (uncomment if needed)
% [h,w] = freqz(b,1,1024);
% figure
% plot(f,m,w/pi,abs(h),'--'),grid on
% xlabel('Normalized frequency'), ylabel('Magnitude'), title('Filter response')
% Apply filter:
outsig = filter(b,1,noiseZP);
end
%% Plot results (uncomment if needed)
% fft_noise1 = fft(noiseZP)./(n+2*l);
% fft_noise2 = fft(outsig)./(n+2*l);
% figure
% % Time domain
% subplot(2,1,1)
% plot(noiseZP), hold on
% plot(outsig,'--r'), hold off
% legend('Input','Outsig')
% xlabel('Samples'),ylabel('Amplitude'),title('Time domain')
% % Frequency domain
% subplot(2,1,2)
% plot(linspace(0,fs,n+2*l),20*log10(abs(fft_noise1))), hold on
% plot(linspace(0,fs,n+2*l),20*log10(abs(fft_noise2)),'--r'), hold off
% legend('Broadband noise','Filtered noise')
% xlabel('Frequency (Hz)'),ylabel('Squared modulus (dB SPL)'),title('Frequency domain')
% eof