THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

JOERGENSEN2011COMBINEINFORMATION - Combine information

Program code:

function output = joergensen2011combineinformation(input,SNRs,conditions,Nsp)
%JOERGENSEN2011COMBINEINFORMATION  Combine information
%   Usage: output = joergensen2011combineinformation(input,SNRs,conditions,Nsp);
%
%   Input parameters:
%     input      : Cell array with the SNRenv results for each
%                  processing condition (n),SNR (k), and speech sample (q)
%     SNRs       : Vector with the SNRs used
%     conditions : Vector with the procssing conditions used.
%     Nsp        : Number the number of speech samples in the XXX
%
%   Output parameters:
%     output     : Structure containing the following fields:
%
%                  `output.combined_aud` 
%                     [n,k] Matrix with overall SNRenv
%                     for each processing condition and SNR
% 
%                  `output.SNRenvs`
%                     Cell array {n,k,q} with entries for each
%                     condition, SNR, and speech sample. Each entry
%                     is Matrix with an SNRenv value for each XXX
%
%   `joergensen2011combineinformation(input,SNRs,conditions,Nsp)` combines
%   the SNRenv across modulation and audio filters. It is also possible to
%   extracts other information such as the excitation patterns or long-term
%   spectra.
%
%   XXX Better description
%

% Author: Søren Jørgensen august 2010

if nargin <6
    TimeSpectra = 'no';
end

if nargin <5
    ExPatterns = 'no';
end
res = input;

for q = 1:Nsp %for each of the speech samples
    for n = conditions %for each of the processing conditions
        for k = 1:length(SNRs) %for each SNR
            
            Output_tmp = res{n,k,q};
            % extracting the SNRenvs from the internal representation:
            %           
            SNRenvs{n,k,q} = Output_tmp.outSNRenvs(:,:);
% ------------------ Combining information --------------------------------
            
            tmp = SNRenvs{n,k,q};
            
            %                Converting to linear values:
            linear = 10.^(tmp*.1);
            linear(find(tmp == 0)) = 0;
            
            combined_mod_tmp = sqrt(sum(linear.^2,1)); % Combining across modulation filters using integration model (Green and Swets 1988)
            combined_aud(n,k,q) = (sqrt(sum(combined_mod_tmp.^2)));% Combining across auditory filters
            clear combined_mod_tmp;
            
        end
    end
    
end
%
% saving output:
output.combined_aud = combined_aud;
output.SNRenvs = SNRenvs;