THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

TAAL2011 - The Short-time objective intelligibility measure (STOI)

Program code:

function d = taal2011(sigclean, sigproc, fs)
%TAAL2011  The Short-time objective intelligibility measure (STOI)
%   Usage: d = taal2011(sigclean, sigproc, fs);
%
%   `d = stoi(sigclean, sigproc, fs)` returns the output of the Short-Time
%   Objective Intelligibility (STOI) measure described in Taal
%   et. al. (2010) & (2011), where *sigclean* and *sigproc* denote the clean and
%   processed speech, respectively, with sample rate *fs* measured in
%   Hz. The output *d* is expected to have a monotonic relation with the
%   subjective speech-intelligibility, where a higher *d* denotes better
%   intelligible speech. See Taal et. al. (2010) & (2011) for more details.
%
%   The model consists of the following stages:
%
%   1) Removal of silent frames. Frames (of length 512) of the input
%      signals that have an energy of 40 dB less than the most energetic
%      frame are removed.
%
%   2) Expansion of the signals into a Fourier filterbank with a Hanning
%      window length of 25ms and 256 channels covering the the frequency
%      range from 0 to 5 kHz. The energy of the bands are then summed
%      into third-octaves
%
%   3) The output *d* is computed by a correlation process. See the
%      referenced papers for more details.
%
%   Examples:
%   ---------
%
%   The following example shows a simple comparison between the
%   intelligibility of a noisy speech signal and the same signal after
%   noise reduction using a simple soft thresholding (spectral
%   subtraction):::
%  
%     % Get a clean and noisy test signal
%     [f,fs]=cocktailparty;
%     Ls=length(f);
%     f_noisy=f+0.01*randn(Ls,1);
%
%     % Simple spectral subtraction to remove the noise
%     a=128; M=256; g=gabtight('hann',a,M);
%     c_noise   = dgtreal(f,g,a,M);
%     c_removed = thresh(c_noise,0.01);
%     f_removed = idgtreal(c_removed,g,a,M);
%     f_removed = f_removed(1:Ls);
%
%     % Compute the STOI of noisy vs. removed
%     d_noisy   = taal2011(f, f_noisy, fs)
%     d_removed = taal2011(f, f_removed, fs)
%
%   The original STOI model can be downloaded from
%   `<http://msp.ewi.tudelft.nl/content/short-time-objective-intelligibility-measure>`_
%   This is a standalone version not depending on LTFAT and AMToolbox,
%   and licensed under a different license, but the models are
%   functionally equivalent.
%
%   References: taal2010short taal2011algorithm
  
  
%% -------- Model parameters ---------------------------------

fs_model = 10000; % Sample rate of proposed intelligibility measure
N_frame	= 256;    % Window support
K = 512;          % FFT size
J = 15;           % Number of 1/3 octave bands
mn = 150;         % Center frequency of first 1/3 octave band in Hz.
N = 30;           % Number of frames for intermediate intelligibility
                  % measure (Length analysis window)
Beta = -15;       % Lower SDR-bound
dyn_range = 40;   % Speech dynamic range

%% -------- Checking and initialization  ---------------------

% constant for clipping procedure
c           = 10^(-Beta/20);                            

if length(sigclean)~=length(sigproc)
    error('sigclean and sigproc should have the same length');
end

% Number of signals
W=size(sigclean,2);

% Get 1/3 octave band matrix
H = thirdoct(fs_model, K, J, mn);

% resample signals if other samplerate is used than fs_model The original
% model used the "resample" function. However, this function not part of the
% Matlab core functions and is not (at the time of writing) included in
% Octave.
if fs ~= fs_model
  newlength= round(length(sigclean)/fs*fs_model);
  sigclean = fftresample(sigclean, newlength);
  sigproc  = fftresample(sigproc,  newlength);
end

% Loop over multi-signals
d=zeros(1,W);
for w=1:W
  x=sigclean(:,w);
  y=sigproc(:,w);

  %% -------- Compute TF representation
  
  % Remove silent frames. Below, the clean signal is now called "x" and the
  % processed signal is called "y"
  [x,y] = removeSilentFrames(x,y,dyn_range, N_frame, N_frame/2);
  
  % Compute sampled short-time Fourier transforms using LTFAT
  x_hat=dgtreal(x,{'hann',N_frame},N_frame/2,K);
  y_hat=dgtreal(y,{'hann',N_frame},N_frame/2,K);  
  N_timesteps=size(x_hat, 2);
  
  % Collect the frequency bands into the 1/3 octave band TF-representation
  % This is done through multiplication with a sparse matrix consisting of
  % 0 and 1's
  X = sqrt(H*abs(x_hat).^2);
  Y = sqrt(H*abs(y_hat).^2);
  
  %% -------- Compute the intelligibility measure
  
  % loop al segments of length N and obtain intermediate intelligibility measure for all TF-regions
  
  % init memory for intermediate intelligibility measure
  d_interm  	= zeros(J, length(N:size(X, 2)));
    
  for m = N:size(X, 2)
    % regions with length N of clean and processed TF-units for all j
    X_seg = X(:, (m-N+1):m);
    Y_seg = Y(:, (m-N+1):m);
    
    % obtain scale factor for normalizing processed TF-region for all j
    alpha   = sqrt(sum(X_seg.^2, 2)./sum(Y_seg.^2, 2));
    
    % obtain \alpha*Y_j(n) from Eq.(2) [1], pointwise mul with alpha
    aY_seg 	= bsxfun(@times,Y_seg,alpha);
    for jj = 1:J
      % apply clipping from Eq.(3)   	
      Y_prime             = min(aY_seg(jj, :), X_seg(jj, :)+X_seg(jj, :)*c);
      
      % obtain correlation coeffecient from Eq.(4) [1]
      d_interm(jj, m-N+1)  = taa_corr(X_seg(jj, :).', Y_prime(:));
    end
  end
  
  % combine all intermediate intelligibility measures as in Eq.(4) [1]
  
  d(w) = mean(d_interm(:));                              
end;

%% ---------  Subfunctions -------------------------------


function  [A cf] = thirdoct(fs, N_fft, numBands, mn)
%   [A CF] = THIRDOCT(FS, N_FFT, NUMBANDS, MN) returns 1/3 octave band matrix
%   inputs:
%       FS:         samplerate 
%       N_FFT:      FFT size
%       NUMBANDS:   number of bands
%       MN:         center frequency of first 1/3 octave band
%   outputs:
%       A:          octave band matrix
%       CF:         center frequencies

f  = linspace(0, fs, N_fft+1);
f  = f(1:(N_fft/2+1));
k  = 0:(numBands-1); 
cf = 2.^(k/3)*mn;
fl = sqrt((2.^(k/3)*mn).*2.^((k-1)/3)*mn);
fr = sqrt((2.^(k/3)*mn).*2.^((k+1)/3)*mn);
%A  = spzeros(numBands, length(f));
A  = sparse(numBands, length(f));

for ii = 1:(length(cf))
  [a b] = min((f-fl(ii)).^2);
  fl(ii) = f(b);
  fl_ii = b;
  
  [a b] = min((f-fr(ii)).^2);
  fr(ii) = f(b);
  fr_ii = b;
  A(ii,fl_ii:(fr_ii-1))	= 1;
end

rnk         = sum(A, 2);
numBands = find((rnk(2:end)>=rnk(1:(end-1))) & (rnk(2:end)~=0)~=0, 1, 'last' )+1;
A           = A(1:numBands, :);
cf          = cf(1:numBands);

%%
%%
function [x_sil y_sil] = removeSilentFrames(x, y, range, N, K)
%   [X_SIL Y_SIL] = REMOVESILENTFRAMES(X, Y, RANGE, N, K) X and Y
%   are segmented with frame-length N and overlap K, where the maximum energy
%   of all frames of X is determined, say X_MAX. X_SIL and Y_SIL are the
%   reconstructed signals, excluding the frames, where the energy of a frame
%   of X is smaller than X_MAX-RANGE

x       = x(:);
y       = y(:);

frames  = 1:K:(length(x)-N);
w       = hanning(N);
msk     = zeros(size(frames));

for j = 1:length(frames)
    jj      = frames(j):(frames(j)+N-1);
    msk(j) 	= 20*log10(norm(x(jj).*w)./sqrt(N));
end

msk     = (msk-max(msk)+range)>0;
count   = 1;

x_sil   = zeros(size(x));
y_sil   = zeros(size(y));

for j = 1:length(frames)
    if msk(j)
        jj_i            = frames(j):(frames(j)+N-1);
        jj_o            = frames(count):(frames(count)+N-1);
        x_sil(jj_o)     = x_sil(jj_o) + x(jj_i).*w;
        y_sil(jj_o)  	= y_sil(jj_o) + y(jj_i).*w;
        count           = count+1;
    end
end

x_sil = x_sil(1:jj_o(end));
y_sil = y_sil(1:jj_o(end));


%%
function rho = taa_corr(x, y)
%   RHO = TAA_CORR(X, Y) Returns correlation coeffecient between column
%   vectors x and y. Gives same results as 'corr' from statistics toolbox.
xn    	= x-mean(x);
yn   	= y-mean(y);
rho   	= dot(xn/norm(xn),yn/norm(yn));