THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

ZIEGELWANGER2013 - Time of arrival estimates

Program code:

function [Obj,results]=ziegelwanger2013(Obj,method,model,p0_onaxis)
%ZIEGELWANGER2013 Time of arrival estimates
%   Usage: [Obj,results]=ziegelwanger2013(Obj,method,model,p0_onaxis) 
%
%   Input parameters:
%       Obj: SOFA object
%       method :   (Optional) Select one of the estimation methods
%       model  :   (Optional) Correct estimated toa, using geometrical
%                  TOA-Model. If model=0 use TOA estimated, 
%                  if model=1 use TOA modeled (default).
%       p0_onaxis: (optional) Starting values for lsqcurvefit
%           dim 1: [sphere-radius in m,
%                  azimut of ear in radiants,
%                  elevation of ear in radiants, 
%                  direction-independent delay in seconds]
%           dim 2: each record channel
% 
%   Output parameters:
%       Obj: SOFA Object
% 
%       results.toa: data matrix with time of arrival (TOA) for each impulse response (IR):
%           dim 1: each toa in samples
%           dim 2: each record channel
%       results.p_onaxis: estimated on-axis model-parameters
%           dim 1: [sphere-radius in m,
%                  azimut of ear in radiants,
%                  elevation of ear in radiants,
%                  direction-independent delay in seconds]
%           dim 2: each record channel
%       results.p_offaxis: estimated off-axis model-parameters
%           dim 1: [sphere-radius in m,
%                  xM in m,
%                  yM in m,
%                  zM in m,
%                  direction-independent delay in seconds,
%                  channel (starting at 1),
%                  azimut of ear in radiants,
%                  elevation of ear in radiants]
%           dim 2: each record channel
%
%   Estimates the Time-of-Arrival for each measurement in Obj (SOFA) and
%   corrects the results with a geometrical model of the head.
%
%   The value of method is an integer choosing one of the following
%   methods. XXX Explain for each method a little about how they work:
%
%   1) Threshold-Detection
%
%   2) Centroid of squared IR
%
%   3) Mean Groupdelay
%
%   4) Minimal-Phase Cross-Correlation (Max) (default)
%
%   Requirements: 
%   1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
% 
%   2) Optimization Toolbox for Matlab
%
%   3) Data in hrtf/ziegelwanger2013
%
%
%   Examples:
%   ---------
% 
%   To calculate the model parameters for the on-axis time-of-arrival model
%   (p_onaxis) and for the off-axis time-of-arrival model (p_offaxis) for a
%   given HRTF set (SOFA object, 'Obj') with the minimum-phase
%   cross-correlation method, use:
%
%       [Obj,results]=ziegelwanger2013(Obj,4,1);
%
%   See also: ziegelwanger2013onaxis, ziegelwanger2013offaxis,
%   data_ziegelwanger2013, exp_ziegelwanger2013
%
%   References:
%     P. Majdak and H. Ziegelwanger. Continuous-direction model of the
%     broadband time-of-arrival in the head-related transfer functions. In
%     ICA 2013 Montreal, volume 19, page 050016, Montreal, Canada, 2013. ASA.
%     
%     H. Ziegelwanger and P. Majdak. Modeling the broadband time-of-arrival
%     of the head-related transfer functions for binaural audio. In
%     Proceedings of the 134th Convention of the Audio Engineering Society,
%     page 7, Rome, 2013.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/binaural/ziegelwanger2013.php

% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria

%% ----------------------------convert to SOFA-----------------------------
if ~isfield(Obj,'GLOBAL_Version')
    Obj=SOFAconvertARI2SOFA(Obj.hM,Obj.meta,Obj.stimPar);
end

%% ----------------------------check variables-----------------------------

if ~exist('method','var')
    method=4;
else if isempty(method)
        method=4;
    end
end

if ~exist('model','var')
    model=1;
else if isempty(model)
        model=1;
    end
end

if ~exist('p0_onaxis','var')
    p0_onaxis=[[0.0875; pi/2; 0; 0] [0.0875; -pi/2; 0; 0]];
end

%% -------------------------initialize variables---------------------------
p0_onaxis=transpose(p0_onaxis);
p_onaxis=zeros(size(p0_onaxis));
p0_offaxis=zeros(2,7);
p_offaxis=p0_offaxis;

toa=zeros(Obj.API.M,Obj.API.R);
toaEst=zeros(Obj.API.M,Obj.API.R);
indicator=zeros(Obj.API.M,Obj.API.R);
indicator_hor=indicator;
indicator_sag=indicator;
pos=zeros(Obj.API.M,8);
pos(:,1:2)=Obj.SourcePosition(:,1:2);
[pos(:,6),pos(:,7)]=sph2hor(Obj.SourcePosition(:,1),Obj.SourcePosition(:,2));
pos(:,8)=cumsum(ones(Obj.API.M,1));
% for ii=1:Obj.API.M
%     for jj=1:Obj.API.R
%         if isnan(Obj.Data.IR_min(1,ii,jj))
%             hM_min(:,ii,jj)=ARI_MinimalPhase(Obj.hM(:,ii,jj));
%         end
%     end
% end

%% -----------------------estimate time-of-arrival-------------------------
switch method
    case 1 %---------------------------Threshold---------------------------
        for ii=1:Obj.API.M
            for jj=1:Obj.API.R
                toaEst(ii,jj)=find(abs(Obj.Data.IR(ii,jj,:))==max(abs(Obj.Data.IR(ii,jj,:))),1);
            end
        end
    case 2 %---------------------------Centroid----------------------------
        for ii=1:Obj.API.M
            for jj=1:Obj.API.R
                toaEst(ii,jj)=find(cumsum(Obj.Data.IR(ii,jj,:).^2)>(sum(Obj.Data.IR(ii,jj,:).^2)/2),1);
            end
        end
    case 3 %---------------------------Groupdelay--------------------------
        for ii=1:Obj.API.M
            for jj=1:Obj.API.R
                [Gd,F]=grpdelay(transpose(double(squeeze(Obj.Data.IR(ii,jj,:)))),1,Obj.API.N,Obj.Data.SamplingRate);
                toaEst(ii,jj)=median(Gd(find(F>500):find(F>2000)));
            end
        end
    case 4 %---------------------------Minimal-Phase-----------------------
        Obj=ARI_MinimalPhase(Obj);
        corrcoeff=zeros(Obj.API.M,Obj.API.R);
        for ii=1:Obj.API.M
            for jj=1:Obj.API.R
                [c,lag]=xcorr(squeeze(Obj.Data.IR(ii,jj,:)),squeeze(Obj.Data.IR_min(ii,jj,:)),Obj.API.N-1,'none');
                [corrcoeff(ii,jj),idx]=max(abs(c));
                corrcoeff(ii,jj)=corrcoeff(ii,jj)/sum(Obj.Data.IR(ii,jj,:).^2);
                toaEst(ii,jj)=lag(idx);
            end
        end
end

%% ----------------------Fit-Models-to-estimated-TOA-----------------------
for ch=1:Obj.API.R

    % Outlier detection: smooth TOA in horizontal planes
    epsilon=5;
    slope=zeros(Obj.API.M,1);
    for ele=min(pos(:,2)):epsilon:max(pos(:,2)) %calculate slope for each elevation along azimuth
        idx=find(pos(:,2)>ele-epsilon/2 & pos(:,2)<=ele+epsilon/2);
        if numel(idx)>1
            idx(length(idx)+1)=idx(1);
            slope(idx(1:end-1),1)=diff(toaEst(idx,ch))./abs(diff(pos(idx,1)));
        end
    end
    sloperms=sqrt(sum(slope.^2)/length(slope));
    if sloperms<30/(length(find(pos(:,2)==0))/2)
        sloperms=30/(length(find(pos(:,2)==0))/2);
    end
    for ele=min(pos(:,2)):epsilon:max(pos(:,2))
        idx=find(pos(:,2)>ele-epsilon/2 & pos(:,2)<=ele+epsilon/2);
        for ii=1:length(idx)-1
            if abs(slope(idx(ii)))>sloperms
                for jj=0:1
                    if ii+jj==0 || ii+jj==length(idx)
                        indicator_hor(idx(end),ch)=1;
                    else
                        indicator_hor(idx(mod(ii+jj,length(idx))),ch)=1;
                    end
                end
            end
        end
        clear idx
    end

    % Outlier detection: constant TOA in sagittal planes
    epsilon=2;
    for ii=1:20
        sag_dev=zeros(Obj.API.M,1);
        for lat=-90:epsilon:90
            idx=find(pos(:,6)>lat-epsilon/2 & pos(:,6)<=lat+epsilon/2); 
            idx2=find(pos(:,6)>lat-epsilon/2 & pos(:,6)<=lat+epsilon/2 & indicator_hor(:,ch)==0 & indicator(:,ch)==0);
            if length(idx2)>2
                sag_dev(idx,1)=toaEst(idx,ch)-mean(toaEst(idx2,ch));
            end
        end
        sag_var=sqrt(sum(sag_dev.^2)/length(sag_dev));
        if sag_var<2
            sag_var=2;
        end
        indicator_sag(:,ch)=abs(sag_dev)>sag_var;
        indicator(:,ch)=(abs(sag_dev)>sag_var | indicator_hor(:,ch));
    end
    clear sag_dev; clear sag_var;
end

performance.indicator=indicator;
performance.outliers=sum(sum(indicator))/Obj.API.M/2*100;
performance.outliersl=sum(indicator(:,1))/Obj.API.M*100;
performance.outliersr=sum(indicator(:,2))/Obj.API.M*100;

if model
    % Fit on-axis model to outlier adjusted set of estimated TOAs
    for ch=1:Obj.API.R
        p0_onaxis(ch,4)=min(toaEst(indicator(:,ch)==0,ch))/Obj.Data.SamplingRate;
        p0offset_onaxis=[0.06 pi/4 pi/4 0.001];

        idx=find(indicator(:,ch)==0);
        x=pos(idx,1:2)*pi/180;
        y=toaEst(idx,ch)/Obj.Data.SamplingRate;
        if isoctave
            [~,p_onaxis(ch,:)]=leasqr(x,y,p0_onaxis(ch,:),@ziegelwanger2013onaxis);
        else
            p_onaxis(ch,:)=lsqcurvefit(@ziegelwanger2013onaxis,p0_onaxis(ch,:),x,y,p0_onaxis(ch,:)-p0offset_onaxis,p0_onaxis(ch,:)+p0offset_onaxis,optimset('Display','off','TolFun',1e-6));
        end
        toa(:,ch)=ziegelwanger2013onaxis(p_onaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
    end

    % Fit off-axis model to outlier adjusted set of estimated TOAs
    TolFun=[1e-5; 1e-6];
    for ii=1:size(TolFun,1)
        for ch=1:Obj.API.R
            idx=find(indicator(:,ch)==0);
            x=pos(idx,1:2)*pi/180;
            y=toaEst(idx,ch)/Obj.Data.SamplingRate;
            p0_offaxis(ch,:)=[p0_onaxis(ch,1) 0 0 0 p0_onaxis(ch,4) p0_onaxis(ch,2) p0_onaxis(ch,3)];
            p0offset_offaxis=[0.05 0.05 0.05 0.05 0.001 pi pi];
            if isoctave
                [~,p_offaxis(ch,:)]=leasqr(x,y,p0_offaxis(ch,:),@ziegelwanger2013offaxis);
            else
                p_offaxis(ch,:)=lsqcurvefit(@ziegelwanger2013offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',TolFun(ii,1)));
            end
            toa(:,ch)=ziegelwanger2013offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
        end
        if abs(diff(p_offaxis(:,1)))>0.003 || abs(diff(p_offaxis(:,3)))>0.003
            p_offaxis(:,[1 3])=p_offaxis([2 1],[1 3]);
            for ch=1:Obj.API.R
                idx=find(indicator(:,ch)==0);
                x=pos(idx,1:2)*pi/180;
                y=toaEst(idx,ch)/Obj.Data.SamplingRate;
                p0_offaxis(ch,:)=[p_offaxis(ch,1) mean(p_offaxis(:,2)) p_offaxis(ch,3) mean(p_offaxis(:,4)) mean(p_offaxis(:,5)) p_offaxis(ch,6) p_offaxis(ch,7)];
                p0offset_offaxis=[0.05 0.05 0.05 0.05 0.001 pi/2 pi/2];
                if isoctave
                    [~,p_offaxis(ch,:)]=leasqr(x,y,p0_offaxis(ch,:),@ziegelwanger2013offaxis);
                else
                    p_offaxis(ch,:)=lsqcurvefit(@ziegelwanger2013offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',TolFun(ii,1)));
                end
                toa(:,ch)=ziegelwanger2013offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
            end
        end
        if abs(diff(p_offaxis(:,1)))<0.003 && abs(diff(p_offaxis(:,2)))<0.003 && abs(diff(p_offaxis(:,3)))<0.003 && abs(diff(p_offaxis(:,4)))<0.003
            break
        end
    end
else
    toa=toaEst;
    p_offaxis=p0_offaxis;
end

Obj.Data.Delay=toa;
Obj.Data.p_onaxis=transpose(p_onaxis);
Obj.Data.p_offaxis=transpose(p_offaxis);
Obj.Data.performance=performance;

results.toa=toa;
results.p_onaxis=transpose(p_onaxis);
results.p_offaxis=transpose(p_offaxis);
results.performance=performance;

end %of function

function Obj=ARI_MinimalPhase(Obj)
    Obj.Data.IR_min=zeros(size(Obj.Data.IR));

    for jj=1:Obj.API.R
        for ii=1:Obj.API.M
%             h=squeeze(Obj.Data.IR(ii,jj,:));
            h=[squeeze(Obj.Data.IR(ii,jj,:)); zeros(4096-Obj.API.N,1)];
            % decompose signal
            amp1=abs(fft(h));

            % transform
            amp2=amp1;
            an2u=-imag(hilbert(log(amp1))); % minimal phase

            % reconstruct signal from amp2 and an2u
            % build a symmetrical phase 
            an2u=an2u(1:floor(length(h)/2)+1);
            an2u=[an2u; -flipud(an2u(2:end+mod(length(h),2)-1))];
            an2=an2u-round(an2u/2/pi)*2*pi;  % wrap around +/-pi: wrap(x)=x-round(x/2/pi)*2*pi
            % amplitude
            amp2=amp2(1:floor(length(h)/2)+1);
            amp2=[amp2; flipud(amp2(2:end+mod(length(h),2)-1))];
            % back to time domain
            h2=real(ifft(amp2.*exp(1i*an2)));
            Obj.Data.IR_min(ii,jj,:)=h2(1:Obj.API.N);
        end
    end
end