This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function [Obj,results]=ziegelwanger2013(Obj,method,model,p0_onaxis)
%ZIEGELWANGER2013 Time of arrival estimates
% Usage: [Obj,results]=ziegelwanger2013(Obj,method,model,p0_onaxis)
%
% Input parameters:
% Obj: SOFA object
% method : (Optional) Select one of the estimation methods
% model : (Optional) Correct estimated toa, using geometrical
% TOA-Model. If model=0 use TOA estimated,
% if model=1 use TOA modeled (default).
% p0_onaxis: (optional) Starting values for lsqcurvefit
% dim 1: [sphere-radius in m,
% azimut of ear in radiants,
% elevation of ear in radiants,
% direction-independent delay in seconds]
% dim 2: each record channel
%
% Output parameters:
% Obj: SOFA Object
%
% results.toa: data matrix with time of arrival (TOA) for each impulse response (IR):
% dim 1: each toa in samples
% dim 2: each record channel
% results.p_onaxis: estimated on-axis model-parameters
% dim 1: [sphere-radius in m,
% azimut of ear in radiants,
% elevation of ear in radiants,
% direction-independent delay in seconds]
% dim 2: each record channel
% results.p_offaxis: estimated off-axis model-parameters
% dim 1: [sphere-radius in m,
% xM in m,
% yM in m,
% zM in m,
% direction-independent delay in seconds,
% channel (starting at 1),
% azimut of ear in radiants,
% elevation of ear in radiants]
% dim 2: each record channel
%
% Estimates the Time-of-Arrival for each measurement in Obj (SOFA) and
% corrects the results with a geometrical model of the head.
%
% The value of method is an integer choosing one of the following
% methods. XXX Explain for each method a little about how they work:
%
% 1) Threshold-Detection
%
% 2) Centroid of squared IR
%
% 3) Mean Groupdelay
%
% 4) Minimal-Phase Cross-Correlation (Max) (default)
%
% Requirements:
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Optimization Toolbox for Matlab
%
% 3) Data in hrtf/ziegelwanger2013
%
%
% Examples:
% ---------
%
% To calculate the model parameters for the on-axis time-of-arrival model
% (p_onaxis) and for the off-axis time-of-arrival model (p_offaxis) for a
% given HRTF set (SOFA object, 'Obj') with the minimum-phase
% cross-correlation method, use:
%
% [Obj,results]=ziegelwanger2013(Obj,4,1);
%
% See also: ziegelwanger2013onaxis, ziegelwanger2013offaxis,
% data_ziegelwanger2013, exp_ziegelwanger2013
%
% References:
% P. Majdak and H. Ziegelwanger. Continuous-direction model of the
% broadband time-of-arrival in the head-related transfer functions. In
% ICA 2013 Montreal, volume 19, page 050016, Montreal, Canada, 2013. ASA.
%
% H. Ziegelwanger and P. Majdak. Modeling the broadband time-of-arrival
% of the head-related transfer functions for binaural audio. In
% Proceedings of the 134th Convention of the Audio Engineering Society,
% page 7, Rome, 2013.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/binaural/ziegelwanger2013.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Harald Ziegelwanger, Acoustics Research Institute, Vienna,
% Austria
%% ----------------------------convert to SOFA-----------------------------
if ~isfield(Obj,'GLOBAL_Version')
Obj=SOFAconvertARI2SOFA(Obj.hM,Obj.meta,Obj.stimPar);
end
%% ----------------------------check variables-----------------------------
if ~exist('method','var')
method=4;
else if isempty(method)
method=4;
end
end
if ~exist('model','var')
model=1;
else if isempty(model)
model=1;
end
end
if ~exist('p0_onaxis','var')
p0_onaxis=[[0.0875; pi/2; 0; 0] [0.0875; -pi/2; 0; 0]];
end
%% -------------------------initialize variables---------------------------
p0_onaxis=transpose(p0_onaxis);
p_onaxis=zeros(size(p0_onaxis));
p0_offaxis=zeros(2,7);
p_offaxis=p0_offaxis;
toa=zeros(Obj.API.M,Obj.API.R);
toaEst=zeros(Obj.API.M,Obj.API.R);
indicator=zeros(Obj.API.M,Obj.API.R);
indicator_hor=indicator;
indicator_sag=indicator;
pos=zeros(Obj.API.M,8);
pos(:,1:2)=Obj.SourcePosition(:,1:2);
[pos(:,6),pos(:,7)]=sph2hor(Obj.SourcePosition(:,1),Obj.SourcePosition(:,2));
pos(:,8)=cumsum(ones(Obj.API.M,1));
% for ii=1:Obj.API.M
% for jj=1:Obj.API.R
% if isnan(Obj.Data.IR_min(1,ii,jj))
% hM_min(:,ii,jj)=ARI_MinimalPhase(Obj.hM(:,ii,jj));
% end
% end
% end
%% -----------------------estimate time-of-arrival-------------------------
switch method
case 1 %---------------------------Threshold---------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
toaEst(ii,jj)=find(abs(Obj.Data.IR(ii,jj,:))==max(abs(Obj.Data.IR(ii,jj,:))),1);
end
end
case 2 %---------------------------Centroid----------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
toaEst(ii,jj)=find(cumsum(Obj.Data.IR(ii,jj,:).^2)>(sum(Obj.Data.IR(ii,jj,:).^2)/2),1);
end
end
case 3 %---------------------------Groupdelay--------------------------
for ii=1:Obj.API.M
for jj=1:Obj.API.R
[Gd,F]=grpdelay(transpose(double(squeeze(Obj.Data.IR(ii,jj,:)))),1,Obj.API.N,Obj.Data.SamplingRate);
toaEst(ii,jj)=median(Gd(find(F>500):find(F>2000)));
end
end
case 4 %---------------------------Minimal-Phase-----------------------
Obj=ARI_MinimalPhase(Obj);
corrcoeff=zeros(Obj.API.M,Obj.API.R);
for ii=1:Obj.API.M
for jj=1:Obj.API.R
[c,lag]=xcorr(squeeze(Obj.Data.IR(ii,jj,:)),squeeze(Obj.Data.IR_min(ii,jj,:)),Obj.API.N-1,'none');
[corrcoeff(ii,jj),idx]=max(abs(c));
corrcoeff(ii,jj)=corrcoeff(ii,jj)/sum(Obj.Data.IR(ii,jj,:).^2);
toaEst(ii,jj)=lag(idx);
end
end
end
%% ----------------------Fit-Models-to-estimated-TOA-----------------------
for ch=1:Obj.API.R
% Outlier detection: smooth TOA in horizontal planes
epsilon=5;
slope=zeros(Obj.API.M,1);
for ele=min(pos(:,2)):epsilon:max(pos(:,2)) %calculate slope for each elevation along azimuth
idx=find(pos(:,2)>ele-epsilon/2 & pos(:,2)<=ele+epsilon/2);
if numel(idx)>1
idx(length(idx)+1)=idx(1);
slope(idx(1:end-1),1)=diff(toaEst(idx,ch))./abs(diff(pos(idx,1)));
end
end
sloperms=sqrt(sum(slope.^2)/length(slope));
if sloperms<30/(length(find(pos(:,2)==0))/2)
sloperms=30/(length(find(pos(:,2)==0))/2);
end
for ele=min(pos(:,2)):epsilon:max(pos(:,2))
idx=find(pos(:,2)>ele-epsilon/2 & pos(:,2)<=ele+epsilon/2);
for ii=1:length(idx)-1
if abs(slope(idx(ii)))>sloperms
for jj=0:1
if ii+jj==0 || ii+jj==length(idx)
indicator_hor(idx(end),ch)=1;
else
indicator_hor(idx(mod(ii+jj,length(idx))),ch)=1;
end
end
end
end
clear idx
end
% Outlier detection: constant TOA in sagittal planes
epsilon=2;
for ii=1:20
sag_dev=zeros(Obj.API.M,1);
for lat=-90:epsilon:90
idx=find(pos(:,6)>lat-epsilon/2 & pos(:,6)<=lat+epsilon/2);
idx2=find(pos(:,6)>lat-epsilon/2 & pos(:,6)<=lat+epsilon/2 & indicator_hor(:,ch)==0 & indicator(:,ch)==0);
if length(idx2)>2
sag_dev(idx,1)=toaEst(idx,ch)-mean(toaEst(idx2,ch));
end
end
sag_var=sqrt(sum(sag_dev.^2)/length(sag_dev));
if sag_var<2
sag_var=2;
end
indicator_sag(:,ch)=abs(sag_dev)>sag_var;
indicator(:,ch)=(abs(sag_dev)>sag_var | indicator_hor(:,ch));
end
clear sag_dev; clear sag_var;
end
performance.indicator=indicator;
performance.outliers=sum(sum(indicator))/Obj.API.M/2*100;
performance.outliersl=sum(indicator(:,1))/Obj.API.M*100;
performance.outliersr=sum(indicator(:,2))/Obj.API.M*100;
if model
% Fit on-axis model to outlier adjusted set of estimated TOAs
for ch=1:Obj.API.R
p0_onaxis(ch,4)=min(toaEst(indicator(:,ch)==0,ch))/Obj.Data.SamplingRate;
p0offset_onaxis=[0.06 pi/4 pi/4 0.001];
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
if isoctave
[~,p_onaxis(ch,:)]=leasqr(x,y,p0_onaxis(ch,:),@ziegelwanger2013onaxis);
else
p_onaxis(ch,:)=lsqcurvefit(@ziegelwanger2013onaxis,p0_onaxis(ch,:),x,y,p0_onaxis(ch,:)-p0offset_onaxis,p0_onaxis(ch,:)+p0offset_onaxis,optimset('Display','off','TolFun',1e-6));
end
toa(:,ch)=ziegelwanger2013onaxis(p_onaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
% Fit off-axis model to outlier adjusted set of estimated TOAs
TolFun=[1e-5; 1e-6];
for ii=1:size(TolFun,1)
for ch=1:Obj.API.R
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
p0_offaxis(ch,:)=[p0_onaxis(ch,1) 0 0 0 p0_onaxis(ch,4) p0_onaxis(ch,2) p0_onaxis(ch,3)];
p0offset_offaxis=[0.05 0.05 0.05 0.05 0.001 pi pi];
if isoctave
[~,p_offaxis(ch,:)]=leasqr(x,y,p0_offaxis(ch,:),@ziegelwanger2013offaxis);
else
p_offaxis(ch,:)=lsqcurvefit(@ziegelwanger2013offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',TolFun(ii,1)));
end
toa(:,ch)=ziegelwanger2013offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
if abs(diff(p_offaxis(:,1)))>0.003 || abs(diff(p_offaxis(:,3)))>0.003
p_offaxis(:,[1 3])=p_offaxis([2 1],[1 3]);
for ch=1:Obj.API.R
idx=find(indicator(:,ch)==0);
x=pos(idx,1:2)*pi/180;
y=toaEst(idx,ch)/Obj.Data.SamplingRate;
p0_offaxis(ch,:)=[p_offaxis(ch,1) mean(p_offaxis(:,2)) p_offaxis(ch,3) mean(p_offaxis(:,4)) mean(p_offaxis(:,5)) p_offaxis(ch,6) p_offaxis(ch,7)];
p0offset_offaxis=[0.05 0.05 0.05 0.05 0.001 pi/2 pi/2];
if isoctave
[~,p_offaxis(ch,:)]=leasqr(x,y,p0_offaxis(ch,:),@ziegelwanger2013offaxis);
else
p_offaxis(ch,:)=lsqcurvefit(@ziegelwanger2013offaxis,p0_offaxis(ch,:),x,y,p0_offaxis(ch,:)-p0offset_offaxis,p0_offaxis(ch,:)+p0offset_offaxis,optimset('Display','off','TolFun',TolFun(ii,1)));
end
toa(:,ch)=ziegelwanger2013offaxis(p_offaxis(ch,:),pos(:,1:2)*pi/180)*Obj.Data.SamplingRate;
end
end
if abs(diff(p_offaxis(:,1)))<0.003 && abs(diff(p_offaxis(:,2)))<0.003 && abs(diff(p_offaxis(:,3)))<0.003 && abs(diff(p_offaxis(:,4)))<0.003
break
end
end
else
toa=toaEst;
p_offaxis=p0_offaxis;
end
Obj.Data.Delay=toa;
Obj.Data.p_onaxis=transpose(p_onaxis);
Obj.Data.p_offaxis=transpose(p_offaxis);
Obj.Data.performance=performance;
results.toa=toa;
results.p_onaxis=transpose(p_onaxis);
results.p_offaxis=transpose(p_offaxis);
results.performance=performance;
end %of function
function Obj=ARI_MinimalPhase(Obj)
Obj.Data.IR_min=zeros(size(Obj.Data.IR));
for jj=1:Obj.API.R
for ii=1:Obj.API.M
% h=squeeze(Obj.Data.IR(ii,jj,:));
h=[squeeze(Obj.Data.IR(ii,jj,:)); zeros(4096-Obj.API.N,1)];
% decompose signal
amp1=abs(fft(h));
% transform
amp2=amp1;
an2u=-imag(hilbert(log(amp1))); % minimal phase
% reconstruct signal from amp2 and an2u
% build a symmetrical phase
an2u=an2u(1:floor(length(h)/2)+1);
an2u=[an2u; -flipud(an2u(2:end+mod(length(h),2)-1))];
an2=an2u-round(an2u/2/pi)*2*pi; % wrap around +/-pi: wrap(x)=x-round(x/2/pi)*2*pi
% amplitude
amp2=amp2(1:floor(length(h)/2)+1);
amp2=[amp2; flipud(amp2(2:end+mod(length(h),2)-1))];
% back to time domain
h2=real(ifft(amp2.*exp(1i*an2)));
Obj.Data.IR_min(ii,jj,:)=h2(1:Obj.API.N);
end
end
end