This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function output = exp_takanen2013(varargin)
%EXP_TAKANEN2013 Figures from Takanen, Santala, Pulkki (2013a,2013b)
% Usage: output = exp_takanen2013(flag)
%
% EXP_TAKANEN2013(flag) reproduces the figure given by flag either from
% the Takanen et al. (2013) book chapter or the Takanen et al. (2014)
% manuscript. The format of its output depends on the chosen figure.
% Optionally, pre-computed cochlear model outputs for the different
% scenarios can be applied to significantly reduce the required
% computation time. The pre-computed cochlear model outputs can be
% obtained from the authors.
%
% The following flags can be specified:
%
% 'binsig' use binaural input signals in the computation. This
% is the default.
%
% 'cochlea' use pre-computed cochlea model outputs in the
% computation to reduce computation time.
%
% 'fig8' Figure 8 from the book chapter Takanen et al. (2013). Binaural activity
% maps obtained with the model for an off-sweet-spot
% listening scenario with different audio coding
% techniques.
%
% 'fig9' Figure 9 from the book chapter Takanen et al. (2013). Activation
% distributions obtained with the model for (a) the
% reference scenario of incoherent pink noise emitted
% from twelve azimuth directions, and (b)-(d) the
% reproduction of such a scenario with an eight-channel
% loudspeaker system employing signals obtained with
% different audio coding techniques. Additionally, the
% the distributions when DirAC is used in audio coding
% of 5.0 surround signal having incoherent pink noise
% in each channel with (e) the straightforward method
% and (f) the even-layout method.
%
% 'fig7_takanen2014' Figure 7 from the article Takanen et al. (2014). Binaural activity maps
% for four binaural listening scenarios, namely (a)
% HRTF-processed pink noise, (b) pink noise with ITD,
% (c) anti-phasic sinusoidal sweep, and (d) band-
% limited noise centered around 500 Hz with an ITD of
% 1.5 ms.
%
% 'fig8_takanen2014' Figure 8 from the article Takanen et al. (2014). Binaural activity maps
% for four binaural listening scenarios, namely (a)
% S_pi N_0 with different signal-to-noise ratios,
% (b) binaural interference, (c) precedence effect, and
% (d) binaural room impulse response.
%
% If no flag is given, the function will print the list of valid flags.
%
% Requirements and installation:
% 1) Functioning model verhulst2012 (see the corresponding requirements)
%
% 2) Data from www.acoustics.hut.fi/publications/papers/AMTool2013-bam/ in amtbase/signals
%
% 3) at least 3 GB of RAM
%
% Examples:
% ---------
%
% To display Figure 8 from the book chapter Takanen et al. (2013) using pre-computed cochlea
% model outputs use:
%
% exp_takanen2013('fig8','cochlea');
%
% To display Figure 9 from the book chapter Takanen et al. (2013) using pre-computed cochlea
% model outputs use:
%
% exp_takanen2013('fig9','cochlea');
%
% To display Figure 7 from the article Takanen et al. (2014) using pre-computed cochlea
% model outputs use:
%
% exp_takanen2013('fig7_takanen2014','cochlea');
%
% To display Figure 8 the article Takanen et al. (2014) using pre-computed cochlea
% model outputs use:
%
% exp_takanen2013('fig8_takanen2014','cochlea');
%
% References:
% M. Takanen, O. Santala, and V. Pulkki. Visualization of functional
% count-comparison-based binaural auditory model output. Hearing
% research, 309:147-163, 2014. PMID: 24513586.
%
% M. Takanen, O. Santala, and V. Pulkki. Perceptually encoded signals and
% their assessment. In J. Blauert, editor, The technology of binaural
% listening. Springer, 2013.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/experiments/exp_takanen2013.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Marko Takanen, Olli Santala, Ville Pulkki
%
% COPYRIGHT (C) 2013 Aalto University
% School of Electrical Engineering
% Department of Signal Processing and Acoustics
% Espoo, Finland
definput.import={'amtredofile'};
definput.flags.type={'missingflag','fig8','fig9','fig7_takanen2014','fig8_takanen2014'};
definput.flags.dataType={'cochlea','binsig'};
[flags,keyvals] = ltfatarghelper({},definput,varargin);
if flags.do_missingflag
flagnames=[sprintf('%s, ',definput.flags.type{2:end-2}),...
sprintf('%s or %s',definput.flags.type{end-1},definput.flags.type{end})];
error('%s: You must specify one of the following flags: %s.',upper(mfilename),flagnames);
end;
%% Setting of parameters
fs = 48000;
printFigs = 0;
printMap =0;
compType =1;
h = figure;
%% Figure 8 from the book chapter
if flags.do_fig8
% if the user wishes to compute the cochlear model outputs, binaural
% input signals are used
if flags.do_binsig
data=safe_load('exp_takanen2013fig8bookbinsignals.mat');
for ind=1:length(data.tests)
data=safe_load('exp_takanen2013fig8bookbinsignals.mat');
insig=data.tests(ind).insig;
tit=data.tests(ind).case;
clear data
% compute the binaural activity map with the model
output = takanen2013(insig,fs,compType,printFigs,printMap);
nXBins= length(output.levels)*(size(output.colorMtrx,1)-1);
dim = size(output.activityMap);
output.colorGains(output.colorGains>1) =1;
outputMtrx = zeros(dim(1),nXBins,3);
for colorInd=1:size(output.colorMtrx,1)
temp = find((output.activityMap==(colorInd-1))==1);
outputMtrx(temp) = output.colorGains(temp)*output.colorMtrx(colorInd,1);
outputMtrx(temp+dim(1)*nXBins) = output.colorGains(temp)*output.colorMtrx(colorInd,2);
outputMtrx(temp+2*dim(1)*nXBins) = output.colorGains(temp)*output.colorMtrx(colorInd,3);
end
g(ind)= subplot(3,2,ind);imagesc(output.levels./90,((dim(1)-1):-20:0)/fs,outputMtrx(1:20:end,:,:));
clear output outputMtrx
title(tit);
set(gca,'YTick',.0:.5:2.5);
set(gca,'YTickLabel',2.5:-0.5:0);
set(gca,'Xtick',-1:0.4:1);
xlabel('Activation location');
ylabel('Time [s]');
end
end
%otherwise pre-computed cochlea model outputs are used
if flags.do_cochlea
data=safe_load('exp_takanen2013fig8bookcochleadata.mat');
for ind=1:length(data.tests)
data=safe_load('exp_takanen2013fig8bookcochleadata.mat');
tit=data.tests(ind).case;
insig=data.tests(ind).cochlear;
clear data
% compute the binaural activity map with the model
output = takanen2013(insig,fs,compType,printFigs,printMap);
nXBins= length(output.levels)*(size(output.colorMtrx,1)-1);
dim = size(output.activityMap);
output.colorGains(output.colorGains>1) =1;
outputMtrx = single(zeros(dim(1),nXBins,3));
for colorInd=1:size(output.colorMtrx,1)
temp = find((output.activityMap==(colorInd-1))==1);
outputMtrx(temp) = output.colorGains(temp)*output.colorMtrx(colorInd,1);
outputMtrx(temp+dim(1)*nXBins) = output.colorGains(temp)*output.colorMtrx(colorInd,2);
outputMtrx(temp+2*dim(1)*nXBins) = output.colorGains(temp)*output.colorMtrx(colorInd,3);
end
g(ind)= subplot(3,2,ind);imagesc(output.levels./90,((dim(1)-1):-20:0)/fs,outputMtrx(1:20:end,:,:));
clear output outputMtrx
title(tit);
set(gca,'YTick',.0:.5:2.5);
set(gca,'YTickLabel',2.5:-0.5:0);
set(gca,'Xtick',-1:0.4:1);
ylabel('Time [s]');
xlabel('Activation location');
end
end
end
%% Figure 9 from the book chapter
if flags.do_fig9
probDist = zeros(6,19);
% if the user wishes to compute the cochlear model outputs, binaural
% input signals are used
if flags.do_binsig
data=safe_load('exp_takanen2013fig9bookbinsignals.mat');
for ind=1:length(data.tests)
data=safe_load('exp_takanen2013fig9bookbinsignals.mat');
insig=data.tests(ind).insig;
tit=data.tests(ind).case;
clear data
% compute the binaural activity map with the model
output = takanen2013(insig,fs,compType,printFigs,printMap);
for i=1:6
probDist(i,:) = sum(output.colorGains(:,i:6:end));
end
temp = probDist./(max(probDist,[],2)*ones(1,size(probDist,2)));
outputMtrx = zeros(size(temp,1),size(temp,2),3);
for colorInd=2:size(output.colorMtrx,1)
outputMtrx(colorInd-1,:,1) = temp(colorInd-1,:)*output.colorMtrx(colorInd,1);
outputMtrx(colorInd-1,:,2) = temp(colorInd-1,:)*output.colorMtrx(colorInd,2);
outputMtrx(colorInd-1,:,3) = temp(colorInd-1,:)*output.colorMtrx(colorInd,3);
end
g(ind)= subplot(3,2,ind);imagesc(output.levels./90,6:-1:1,outputMtrx);
clear output outputMtrx
title(tit);
set(gca,'YTick',1:6);
set(gca,'YTickLabel',6:-1:1);
set(gca,'Xtick',-1:0.4:1);
ylabel('Frequency area');
xlabel('Distribution of activation');
end
end
%otherwise pre-computed cochlea model outputs are used
if flags.do_cochlea
data=safe_load('exp_takanen2013fig9bookcochleadata.mat');
for ind=1:length(data.tests)
data=safe_load('exp_takanen2013fig9bookcochleadata.mat');
insig=data.tests(ind).cochlear;
tit=data.tests(ind).case;
clear data
% compute the binaural activity map with the model
output = takanen2013(insig,fs,compType,printFigs,printMap);
for i=1:6
probDist(i,:) = sum(output.colorGains(:,i:6:end));
end
temp = probDist./(max(probDist,[],2)*ones(1,size(probDist,2)));
outputMtrx = zeros(size(temp,1),size(temp,2),3);
for colorInd=2:size(output.colorMtrx,1)
outputMtrx(colorInd-1,:,1) = temp(colorInd-1,:)*output.colorMtrx(colorInd,1);
outputMtrx(colorInd-1,:,2) = temp(colorInd-1,:)*output.colorMtrx(colorInd,2);
outputMtrx(colorInd-1,:,3) = temp(colorInd-1,:)*output.colorMtrx(colorInd,3);
end
g(ind)= subplot(3,2,ind);imagesc(output.levels./90,6:-1:1,outputMtrx);
clear output outputMtrx
title(tit);
set(gca,'YTick',1:6);
set(gca,'YTickLabel',6:-1:1);
set(gca,'Xtick',-1:0.4:1);
ylabel('Frequency area');
xlabel('Distribution of activation');
end
end
end
%% Figure 7 from takanen2014
if flags.do_fig7_takanen2014
% compute the cochlear model outputs, load the binaural input signals
if flags.do_binsig, s='exp_takanen2013fig6artbinsignals.mat'; end
% otherwise pre-computed cochlea model outputs are used
if flags.do_cochlea, s='exp_takanen2013fig6artcochleadata.mat'; end
data=safe_load(s);
data_tests=length(data.tests);
siglen=zeros(length(data.tests),1);
data_tests_Data=zeros(length(data_tests),1);
for ind=1:data_tests
if flags.do_cochlea
data_tests_Data(ind)=length(data.tests(ind).cochlearData);
for caseInd=1:data_tests_Data(ind)
siglen(ind)=siglen(ind)+length(data.tests(ind).cochlearData(caseInd).cochlear.velocityLeft);
end
end
if flags.do_binsig
data_tests_Data(ind)=length(data.tests(ind).binSignals);
for caseInd=1:data_tests_Data(ind)
siglen(ind)=siglen(ind)+length(data.tests(ind).binSignals(caseInd).insig);
end
end
end
clear data % release unused memory
for ind=1:data_tests
activityMap=zeros(siglen(ind),114);
gains=zeros(siglen(ind),114);
idx=1;
%some scenarios consist of multiple test cases that are
%processed separately
for caseInd=1:data_tests_Data(ind)
data=safe_load(s);
if flags.do_cochlea
insig=data.tests(ind).cochlearData(caseInd).cochlear;
len=size(insig.velocityLeft,1);
end
if flags.do_binsig
insig=data.tests(ind).binSignals(caseInd).insig;
len=size(insig,1);
end
ylab=data.tests(ind).ylab;
scenario=data.tests(ind).scenario;
ytickPos=data.tests(ind).ytickPos;
ytickLab=data.tests(ind).ytickLab(end:-1:1);
clear data % release unused memory
% compute the binaural activity map with the model
output = takanen2013(insig,fs,compType,printFigs,printMap);
%concatenate the separate activity maps into one map
activityMap(idx:idx+len-1,:)=output.activityMap;
gains(idx:idx+len-1,:)=output.colorGains;
idx=idx+len;
colorMtrx=output.colorMtrx;
levels=output.levels;
clear output % release unused memory
end
%the anti-phasic sweep contains also frequencies below the
%frequency range of the model. Hence, the first 0.5 s of the
%activity map are removed
if(strcmp('Anti-phasic sinusoidal sweep',scenario)==1)
activityMap = activityMap(0.5*fs+1:end,:);
gains = gains(0.5*fs+1:end,:);
end
nXBins= length(levels)*(size(colorMtrx,1)-1);
dim = size(activityMap);
gains(gains>1) =1;
outputMtrx = zeros(dim(1),nXBins,3);
for colorInd=1:size(colorMtrx,1)
temp = find((activityMap==(colorInd-1))==1);
outputMtrx(temp) = gains(temp)*colorMtrx(colorInd,1);
outputMtrx(temp+dim(1)*nXBins) = gains(temp)*colorMtrx(colorInd,2);
outputMtrx(temp+2*dim(1)*nXBins) = gains(temp)*colorMtrx(colorInd,3);
end
g(ind)= subplot(2,2,ind);imagesc(levels./90,((dim(1)-1):-20:0)/fs,outputMtrx(1:20:end,:,:));
title(scenario);
set(gca,'YTick',ytickPos);
set(gca,'YTickLabel',ytickLab);
set(gca,'Xtick',-1:0.4:1);
ylabel(ylab);
xlabel('Activation location');
end
end
%% Figure 8 from takanen2014
if flags.do_fig8_takanen2014
% compute the cochlear model outputs, load the binaural input signals
if flags.do_binsig, s='exp_takanen2013fig7artbinsignals.mat'; end
% otherwise pre-computed cochlea model outputs are used
if flags.do_cochlea, s='exp_takanen2013fig7artcochleadata.mat'; end
data=safe_load(s);
data_tests=length(data.tests);
siglen=zeros(length(data.tests),1);
data_tests_Data=zeros(length(data_tests),1);
for ind=1:data_tests
if flags.do_cochlea
data_tests_Data(ind)=length(data.tests(ind).cochlearData);
for caseInd=1:data_tests_Data(ind)
siglen(ind)=siglen(ind)+length(data.tests(ind).cochlearData(caseInd).cochlear.velocityLeft);
end
end
if flags.do_binsig
data_tests_Data(ind)=length(data.tests(ind).binSignals);
for caseInd=1:data_tests_Data(ind)
siglen(ind)=siglen(ind)+length(data.tests(ind).binSignals(caseInd).insig);
end
end
end
clear data % release unused memory
for ind=1:data_tests
activityMap=zeros(siglen(ind),114);
gains=zeros(siglen(ind),114);
idx=1;
%some scenarios consist of multiple test cases that are
%processed separately
for caseInd=1:data_tests_Data(ind)
data=safe_load(s);
if flags.do_cochlea
insig=data.tests(ind).cochlearData(caseInd).cochlear;
len=size(insig.velocityLeft,1);
end
if flags.do_binsig
insig=data.tests(ind).binSignals(caseInd).insig;
len=size(insig,1);
end
ylab=data.tests(ind).ylab;
scenario=data.tests(ind).scenario;
ytickPos=data.tests(ind).ytickPos;
ytickLab=data.tests(ind).ytickLab(end:-1:1);
clear data % release unused memory
% compute the binaural activity map with the model
output = takanen2013(insig,fs,compType,printFigs,printMap);
%concatenate the separate activity maps into one map
activityMap(idx:idx+len-1,:)=output.activityMap;
gains(idx:idx+len-1,:)=output.colorGains;
idx=idx+len;
colorMtrx=output.colorMtrx;
levels=output.levels;
clear output % release unused memory
end
%in order to better visualize the clicks in the precedence
%effect scenario, most of the silent parts of the signal
%are removed
if(strcmp('Precedence effect',scenario)==1)
activityMap = activityMap([1500:3700 4500:6700 7500:9700 10500:12700 13500:15700 16500:18700 20200:22400],:);
gains = gains([1500:3700 4500:6700 7500:9700 10500:12700 13500:15700 16500:18700 20200:22400],:);
gains = 2*gains;
end
nXBins= length(levels)*(size(colorMtrx,1)-1);
dim = size(activityMap);
gains(gains>1) =1;
outputMtrx = zeros(dim(1),nXBins,3);
for colorInd=1:size(colorMtrx,1)
temp = find((activityMap==(colorInd-1))==1);
outputMtrx(temp) = gains(temp)*colorMtrx(colorInd,1);
outputMtrx(temp+dim(1)*nXBins) = gains(temp)*colorMtrx(colorInd,2);
outputMtrx(temp+2*dim(1)*nXBins) = gains(temp)*colorMtrx(colorInd,3);
end
g(ind)= subplot(2,2,ind);imagesc(levels./90,((dim(1)-1):-20:0)/fs,outputMtrx(1:20:end,:,:));
title(scenario);
set(gca,'YTick',ytickPos);
set(gca,'YTickLabel',ytickLab);
set(gca,'Xtick',-1:0.4:1);
ylabel(ylab);
xlabel('Activation location');
end
end
output = g;
function data=safe_load(filename)
try
data=load([amtbasepath,'signals',filesep,filename]);
catch exception
disp('=============================================================');
disp('Please load the necessary mat-files from the companying page:');
disp(' www.acoustics.hut.fi/publications/papers/AMTool2013-bam/ ');
disp('and place them in the "signals" directory ');
disp('=============================================================');
error('Error: mat-file %s not found',filename);
end