THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

AUDSPECGRAM - Auditory spectrogram

Program code:

function varargout=audspecgram(insig,fs,varargin)
%AUDSPECGRAM  Auditory spectrogram
%   Usage: audspecgram(insig,fs,op1,op2, ... );
%          C=audspecgram(insig,fs, ... );
%
%   AUDSPECGRAM(insig,fs) plots an auditory spectrogram of the signal insig,
%   which has been sampled at a sampling rate of fs Hz. The output is
%   low-pass modulation filtered before presentation.
%
%   The frequency axis is diplayed on a erb-scale, but labelled in
%   Hz. Using the mouse to get plot coordinates will reveal the real
%   value in erb's. Use erbtofreq to convert to Hz.
%
%   C=AUDSPECGRAM(insig,fs, ... ) returns the image to be displayed as a
%   matrix. Use this in conjunction with imwrite etc. Do *not* use this as a
%   method to compute an auditory representation. Use some of the model
%   preprocessing functions for this.
%
%   Additional arguments can be supplied like this:
%
%     audspecgram(insig,fs,'dynrange',30);
%
%   The arguments must be character strings possibly followed by an argument:
%
%     'adapt'       Model adaptation. This is the default. This options also
%                   sets the output to be displayed on a linear scale.
%    
%     'noadapt'     Do not model adaptation. This option also sets a dB scale to
%                   display the output.
%    
%     'ihc',modelname
%                   Pass modelname to IHCENVELOPE to determine the inner
%                   hair cell envelope extraction process to use. Default is to
%                   use the 'dau' model.
%    
%     'classic'     Display a classic spectrogram. This option is equal to
%                   {'ihc','hilbert', 'noadapt', 'nomf'}
%    
%     'mlp',f       Modulation low-pass filter to frequency f. Default is to
%                   low-pass filter to 50 Hz.
%    
%     'mf',f        Modulation filter with specified center frequency.
%    
%     'nomf'        No modulation filtering of any kind.
%    
%     'image'       Use imagesc to display the spectrogram. This is the default.
%    
%     'clim',clim   Use a colormap ranging from clim(1) to clim(2). These              
%                   values are passed to imagesc. See the help on imagesc.
%    
%     'dynrange',r  Limit the displayed dynamic range to r. This option
%                   is especially usefull when displaying on a dB scale (no adaptation).
%    
%     'fullrange'   Use the full dynamic range. This is the default.
%    
%     'ytick'       A vector containing the frequency in Hz of the yticks.
%    
%     'thr',r       Keep only the largest fraction r of the coefficients, and
%                   set the rest to zero.
%    
%     'frange',frange
%                   Choose a frequency scale ranging from frange(1) to
%                   frange(2), values are entered in Hz. Default is to display from
%                   0 to 8000 Hz.
%    
%     'xres',xres   Approximate number of pixels along x-axis / time.
%    
%     'yres',yres   Approximate number of pixels along y-axis / frequency If
%                   only one of 'xres' and 'yres' is specified, the default
%                   aspect ratio will be used.
%    
%     'displayratio',r  Set the default aspect ratio.
%    
%     'contour'     Do a contour plot to display the spectrogram.
%           
%     'surf'        Do a surf plot to display the spectrogram.
%    
%     'mesh'        Do a mesh plot to display the spectrogram.
%
%     'colorbar'    Display the colorbar. This is the default.
%
%     'nocolorbar'  Do not display the colorbar.
%
%   Examples:
%   ---------
%
%   The following figure shows a classic spectrogram on an Erb scale of a
%   spoken word:
%
%     audspecgram(greasy,16000,'classic','dynrange',50);
%
%   The next example shows a Dau-style spectrogram (including adaptation
%   and modulation low-pass filtering) of the same word:
%
%     audspecgram(greasy,16000);
%
%   See also:   dau1997preproc
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/general/audspecgram.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.
  
%   AUTHOR : Peter Søndergaard.
  
if nargin<2
  error('Too few input arguments.');
end;

if ~isnumeric(insig) || ~isvector(insig)
  error('%s: Input must be a vector.',upper(mfilename));
end;

definput.import={'plotfilterbank','ltfattranslate','tfplot'};
definput.importdefaults={'lin','audtick'};

% Define initial value for flags and key/value pairs.
definput.flags.adapt={'adapt','noadapt'};
definput.flags.thr={'nothr','thr'};
definput.flags.mlp={'mlp','mf','nomf'};
definput.flags.delay={'gammatonedelay','zerodelay'};

definput.keyvals.ihc='ihc_dau';
definput.keyvals.thr=0;
%definput.keyvals.ytick=[0,100,250,500,1000,2000,4000,8000];
definput.keyvals.mlp=50;
definput.keyvals.mf=[0 5 10 16.6 27.7];
definput.keyvals.frange=[0,8000];
definput.keyvals.xres=800;
definput.keyvals.yres=600;

definput.flags.colorbar={'colorbar','nocolorbar'};

definput.groups.classic={'ihc','hilbert', 'noadapt', 'nomf'};


[flags,kv]=ltfatarghelper({},definput,varargin);

siglen=length(insig);

fhigh=kv.frange(2);
flow =kv.frange(1);

audlimits=freqtoerb(kv.frange);

% fhigh can at most be the Nyquest frequency
fhigh=min(fhigh,fs/2);

% Downsample this signal if it is sampled at a much higher rate than
% 2*fhigh. This reduces memory consumption etc. 1.5 and 1.2 are choosen as a
% safeguard to not loose information.
if fs>2*1.5*fhigh
  
  fsnew=round(fhigh*2*1.2);

  % Determine new signal length
  siglen=round(siglen/fs*fsnew);
  
  % Do the resampling using an FFT based method, as this is more flexible
  % than the 'resample' method included in Matlab
  insig=fftresample(insig,siglen);

  % Switch to new value
  fs=fsnew;  
end;

% Determine the hopsize
% Using a hopsize different from 1 is currently not possible because all
% the subsequent filters fail because of a to low subband sampling rate.
%hopsize=max(1,floor(siglen/xres));

hopsize=1;

% find the center frequencies used in the filterbank
fc = erbspace(flow,fhigh,kv.yres);

if 1
  % Calculate filter coefficients for the gammatone filter bank.
  [gt_b, gt_a, delay]=gammatone(fc, fs, 'complex');
  
  % Apply the Gammatone filterbank
  outsig = 2*real(ufilterbankz(gt_b,gt_a,insig,hopsize));
  
else
  L=siglen;
  bw_gauss=audfiltbw(fc)/fs*L/0.79;

  fc_gauss=round(fc/fs*L);
  g=cell(1,kv.yres);

  for m=1:kv.yres
    g{m}=real(pgauss(L,'bw',bw_gauss(m),'cf',fc_gauss(m)));
  end;
  
  outsig=filterbank(insig,g,hopsize);
end;


  
% The subband are now (possibly) sampled at a lower frequency than the
% original signal.
fssubband=round(fs/hopsize);

outsig = ihcenvelope(outsig,fssubband,kv.ihc);

if flags.do_adapt
  % non-linear adaptation loops
  outsig = adaptloop(outsig, fssubband);
end;

if flags.do_nomf
  modfilt_outsig=outsig;
end;
  
if flags.do_mlp
  % Calculate filter coefficients for the 50 Hz modulation lowpass
  % filter. Just use a 2nd order Butterworth for this.
  
  % FIXME: This filter places a pole /very/ close to the unit circle.
  %mlp_a = exp(-(1/0.02)/fs);
  mlp_a = exp(-kv.mlp/fs);
  mlp_b = 1 - mlp_a;
  mlp_a = [1, -mlp_a];

  % Apply the low-pass modulation filter.
  modfilt_outsig = filter(mlp_b,mlp_a,outsig);
end;

if flags.do_mf
  nreps=length(kv.mf)-1;
else
  nreps=1;    
end;

% Loop over the number of modulation frequency channels
for jj=1:nreps

  if flags.do_mf
    % Calculate filter coefficients for the 50 Hz modulation lowpass
    % filter. Just use a 2nd order Butterworth for this.
    [mf_b,mf_a] = butter(2,[kv.mf(jj),kv.mf(jj+1)]/(subbandfs/2));
    
    % Apply the modulation filter.
    modfilt_outsig = filter(mf_b,mf_a,outsig);
    
    if mfc(nmfc) <= 10
      modfilt_outsig = 1*real(modfilt_outsig);
    else
      modfilt_outsig = 1/sqrt(2)*abs(modfilt_outsig);
    end

  end;

  
  if flags.do_thr
    % keep only the largest coefficients.
    modfilt_outsig=largestr(modfilt_outsig,kv.thr);
  end
  
  % Apply transformation to coefficients.
  if flags.do_noadapt
    % This is a safety measure to avoid log of negative numbers.
    modfilt_outsig(:)=max(modfilt_outsig(:),eps);
    
    modfilt_outsig=20*log10(modfilt_outsig);
  end;
  
  plotfilterbank(modfilt_outsig,1,fc,fs,'argimport',flags,kv,'fc',fc,'fs',fs);

  if nargout>0
    varargout={modfilt_outsig,fc};
  end;
  
end
  
% complex frequency shifted first order lowpass
function [b,a] = efilt(w0,bw);

e0 = exp(-bw/2);

b = 1 - e0;
a = [1, -e0*exp(1i*w0)];