THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

DATA_MACPHERSON2003 - Listener averages of polar error rates

Program code:

function data = data_macpherson2003
%DATA_MACPHERSON2003  Listener averages of polar error rates
%   Usage: data = data_macpherson2003
%
%   Output parameters:
%     data.density  : probed ripple densities in ripples/oct (Exp. I)
%     data.depth    : probed ripple depths (peak-to-trough) in dB (Exp. II)
%     data.phase    : probed ripple phases in radians (Exp. III)
%     data.pe_flat  : PER for flat spectrum
%     data.pe_exp1  : increase in PER as a function of ripple density at 
%                     a ripple depth of 40dB 
%                     (col. 1: 0-phase, col. 2: pi-phase)
%     data.pe_exp2  : increase in PER as a function of ripple depth at 
%                     a ripple density of 1 ripple/octave
%                     (col. 1: 0-phase, col. 2: pi-phase)
%     data.pe_exp3  : increase in PER as a function of ripple phase at a 
%                     ripple density of 1 ripple/octave and a ripple depth 
%                     of 40dB
%
%   DATA_MACPHERSON2003 returns listener averages of polar error rates
%   (PERs in %) from Macpherson & Middlebrooks (2003).
%
%   References:
%     E. A. Macpherson and J. C. Middlebrooks. Vertical-plane sound
%     localization probed with ripple-spectrum noise. jasa, 114:430-445,
%     2003.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/humandata/data_macpherson2003.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR: Robert Baumgartner


%% Fig. 6 Ripple-spectrum error rate as a function of ripple density and phase
data.density = [0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8]; % ripples/oct
z40db = zeros(6,10);  % 0-phase, 40dB
pi40db = zeros(6,10); % pi-phase, 40dB
zflat = zeros(6,10);  % 0-phase, flat pectrum
piflat = zeros(6,10); % pi-phase, flat pectrum
% S63
z40db(1,:) =   [26,14,35,30,14,12,2,7,0,0];  % filled squares
pi40db(1,:) =  [0,27,35,16,30,27,17,2,0,0];  % filled triangles
zflat(1,:) =   zeros(1,10);                  % open squares
piflat(1,:) =  [zeros(1,9),5];               % open triangles
% S64
z40db(2,:) =   [14,10,42,80,36,20,10,16,12,4];  % filled squares
pi40db(2,:) =  [10,42,37,26,22,20,7,2,0,0];  % filled triangles
zflat(2,:) =   [0,1,0,0,3,0,0,0,0,0];        % open squares
piflat(2,:) =  [0,0,7,0,0,0,0,0,0,0];        % open triangles
% S65
z40db(3,:) =   [36,16,25,32,24,16,24,7,8,4]; % filled squares
pi40db(3,:) =  [0,28,28,30,35,28,8,8,0,0];   % filled triangles
zflat(3,:) =   [0,0,2,5,4,2,0,5,5,2];        % open squares
piflat(3,:) =  [0,0,2,0,0,5,2,0,0,0];        % open triangles
% S66
z40db(4,:) =   [22,26,32,24,22,5,12,6,2,0];  % filled squares
pi40db(4,:) =  [0,28,26,35,20,0,0,4,2,0];    % filled triangles
zflat(4,:) =   [0,2,0,2,0,2,0,0,0,0];        % open squares
piflat(4,:) =  [2,0,0,0,0,0,0,0,2,0];        % open triangles
% S67
z40db(5,:) =   [24,30,44,60,26,64,28,34,26,16];   % filled squares
pi40db(5,:) =  [12,26,38,28,50,30,38,34,24,18];   % filled triangles
zflat(5,:) =   [6,4,8,6,12,4,6,8,18,10];          % open squares
piflat(5,:) =  [6,6,14,4,6,4,4,6,6,6];            % open triangles
% S77
z40db(6,:) =   [28,34,54,40,54,42,28,24,30,20];   % filled squares
pi40db(6,:) =  [30,42,44,50,40,34,32,42,34,18];   % filled triangles
zflat(6,:) =   [14,14,18,12,22,18,16,16,18,20];   % open squares
piflat(6,:) =  [4,18,14,14,16,14,18,12,16,16];  	% open triangles

data.pe_exp1(:,:,2) = pi40db;
data.pe_exp1(:,:,1) = z40db;


%% Fig. 9: Ripple-spectrum error rate as a function of ripple depth and phase
data.depth = 10:10:40; % ripple depth in dB
flatm = zeros(6,1);  % flat mean
z1rip = zeros(6,4);  % 0-phase, 1 ripple/oct
pi1rip = zeros(6,4); % pi-phase, 1 ripple/oct
z0rip = zeros(6,4);  % 0-phase, flat spectrum
pi0rip = zeros(6,4); % pi-phase, flat spectrum
% S63
flatm(1) =     0;             % open diamond
z1rip(1,:) =   [0,0,20,30];   % filled squares
pi1rip(1,:) =  [0,2,6,16];    % filled triangles
z0rip(1,:) =   [0,0,0,0];     % open squares
pi0rip(1,:) =  [0,0,4,0];     % open triangles
% S64
flatm(2) =     1;             % open diamond
z1rip(2,:) =   [16,44,62,80]; % filled squares
pi1rip(2,:) =  [6,4,16,26];   % filled triangles
z0rip(2,:) =   [0,0,0,0];     % open squares
pi0rip(2,:) =  [0,2,4,0];     % open triangles
% S65
flatm(3) =     2;             % open diamond
z1rip(3,:) =   [0,2,16,32];   % filled squares
pi1rip(3,:) =  [0,2,25,30];   % filled triangles
z0rip(3,:) =   [0,0,4,5];     % open squares
pi0rip(3,:) =  [5,0,2,0];     % open triangles
% S66
flatm(4) =     1;             % open diamond
z1rip(4,:) =   [4,8,18,24];   % filled squares
pi1rip(4,:) =  [6,4,14,35];   % filled triangles
z0rip(4,:) =   [0,2,0,2];     % open squares
pi0rip(4,:) =  [2,0,2,0];     % open triangles
% S67
flatm(5) =     10;            % open diamond
z1rip(5,:) =   [24,28,48,60]; % filled squares
pi1rip(5,:) =  [12,22,14,28]; % filled triangles
z0rip(5,:) =   [12,12,12,6];  % open squares
pi0rip(5,:) =  [18,12,4,4];   % open triangles
% S77
flatm(6) =     14;            % open diamond
z1rip(6,:) =   [22,40,48,40]; % filled squares
pi1rip(6,:) =  [20,38,43,50]; % filled triangles
z0rip(6,:) =   [14,16,14,12]; % open squares
pi0rip(6,:) =  [10,14,22,14];     % open triangles

data.pe_flat = flatm;  % mean error rate for flat spectrum
data.pe_exp2(:,:,2) = pi1rip;
data.pe_exp2(:,:,1) = z1rip;

%% Fig. 11: Ripple-spectrum error rate as a function of ripple phase, density 1 ripple/oct, depth 40dB
data.phase = -3/4*pi:pi/4:pi; % ripple phase in radians
exp3rip  = zeros(5,8);  % 1 ripple/oct with a depth of 40dB
exp3flat = zeros(5,8);   % flat spectrum
% S64
exp3rip(1,:) =  [16,32,60,80,48,18,12,27];   % filled symbols
exp3flat(1,:) = [4,0,0,0,0,2,0,0];           % open symbols
% S65
exp3rip(2,:) =  [30,28,32,32,34,44,48,30];   % filled symbols
exp3flat(2,:) = [0,2,2,4,0,2,0,0];           % open symbols
% S66
exp3rip(3,:) =  [14,16,18,24,14,22,30,34];   % filled symbols
exp3flat(3,:) = [0,0,2,2,0,0,0,0];           % open symbols
% S67
exp3rip(4,:) =  [32,48,42,60,52,50,38,28];   % filled symbols
exp3flat(4,:) = [8,12,8,6,10,16,10,4];       % open symbols
% S77
exp3rip(5,:) =  [34,40,24,40,18,28,24,50];   % filled symbols
exp3flat(5,:) = [24,18,22,12,24,26,24,14];   % open symbols

data.pe_exp3 = exp3rip;

end