THE AUDITORY MODELING TOOLBOX

This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).

View the help

Go to function

PMV2PPP - PMV to PPP conversion

Program code:

function [ varargout ] = pmv2ppp( p,varargin )
%PMV2PPP PMV to PPP conversion
%   Usage:  [ qe,pe,eb ] = pmv2ppp( p,tang,rang );
%           [ qe,pe,eb ] = pmv2ppp( p,tang,rang,exptang );
%
%   Input parameters:
%     p          : prediction matrix (response PMVs)
%     tang       : possible polar target angles. As default, ARI's MSP 
%                  polar angles in the median SP is used.
%     rang       : polar angles of possible response angles.
%                  As default regular 5 deg.-sampling is used (-30:5:210).    
%
%   Output parameters:
%     qe         : quadrant error rate
%     pe         : local polar RMS error in degrees
%     eb         : elevation bias in degrees; QEs and up-rear quadrant excluded
%
%   PMV2PPP(...) retrieves commonly used PPPs (Psychoacoustic performance
%   parameters) for sagittal-plane (SP) localization like quadrant error
%   (QEs), local polar RMS error (PE), and elevation bias (EB) from
%   response PMVs (probability mass vectors) predicted by a localization
%   model. PPPs are retreived either for a specific polar target angle or as
%   an average across all available target angles. The latter is the
%   default.
%
%   PMV2PPP needs the following optional parameter in order to retrieve
%   the PPPs for a specific (set of) target angles:
%
%     'exptang', exptang   experimental polar target angles
%
%   PMV2PPP accepts the following flag:
%
%     'print'      Display the outcomes.
%
%   Example:
%   ---------
%
%   To evaluate chance performance of QE and PE use :
%
%     [qe,pe] = pmv2ppp(ones(49,44));
%
%   References:
%     R. Baumgartner. Modeling sagittal-plane sound localization with the
%     application to subband-encoded head related transfer functions.
%     Master's thesis, University of Music and Performing Arts, Graz, June
%     2012.
%     
%     R. Baumgartner, P. Majdak, and B. Laback. Assessment of Sagittal-Plane
%     Sound Localization Performance in Spatial-Audio Applications,
%     chapter 4, page expected print date. Springer-Verlag GmbH, accepted for
%     publication, 2013.
%     
%
%   Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/modelstages/pmv2ppp.php

% Copyright (C) 2009-2014 Peter L. Søndergaard.
% This file is part of AMToolbox version 1.0.0
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% AUTHOR : Robert Baumgartner

definput.flags.print = {'noprint','print'};
definput.keyvals.rang=-30:5:210;
definput.keyvals.tang=[-30:5:70,80,100,110:5:210];
definput.keyvals.exptang=[];
[flags,kv]=ltfatarghelper({'tang','rang','exptang'},definput,varargin);

    
p = p./repmat(sum(p),length(kv.rang),1);  % ensure probability mass vectors
tang = kv.tang(:);
rang = kv.rang(:);
nt = length(tang);

qet = zeros(nt,1); % QE for each target angle
pet = zeros(nt,1); % PE for each target angle
ebt = zeros(nt,1); % EB for each target angle
isnotuprear = false(nt,1);
for ii = 1:nt % for all target positions
    d = tang(ii)-rang;                 % wraped angular distance between tang & rang
    iduw = (d < -180) | (180 < d);     % 180°-unwrap indices
    d(iduw) = mod(d(iduw) + 180,360) - 180; % 180 deg unwrap
    d = abs(d);                        % absolut distance
    qet(ii) = sum( p(d>=90,ii) );
    pc = p(d<90,ii);                   % pmv for conditional probability excluding QEs
    pc = pc/sum(pc);                   % normalization to sum=1
    pet(ii) = sqrt( sum( pc .* (d(d<90)).^2 )); % RMS of expected difference
    if tang(ii) < 80
      ebt(ii) = sum( pc .* rang(d<90) ) - tang(ii); % expectancy value of rang - tang
      isnotuprear(ii) = true;
    elseif tang(ii) > 180 % elevation instead of polar angle
      ebt(ii) = -( sum( pc .* rang(d<90) ) - tang(ii) );
    else % exclude up-rear quadrant
      isnotuprear(ii) = false;
    end
end
ebt = ebt(isnotuprear);

if ~isempty(kv.exptang)
  
    qetb = (qet(1)+qet(end))/2;  % boundaries for extang
    petb = (pet(1)+pet(end))/2;
    ebtb = (ebt(1)+ebt(end))/2;
    
    extang = tang(:); % extended tang for targets outside
    exqet = qet(:);
    expet = pet(:);
    expb = ebt(:);
    if min(extang)>-90; 
      extang = [-90; extang]; 
      exqet = [qetb; exqet];
      expet = [petb; expet];
      expb = [ebtb; expb];
      isnotuprear = [true;isnotuprear];
    end
    if max(extang)<270; 
      extang = [extang; 270]; 
      exqet = [exqet; qetb];
      expet = [expet; petb];
      expb = [expb; ebtb];
      isnotuprear = [isnotuprear;true];
    end
    
    qet = interp1(extang,exqet,kv.exptang);
    pet = interp1(extang,expet,kv.exptang);
    excluderu = kv.exptang < 80 | kv.exptang > 180;
    ebt = interp1(extang(isnotuprear),expb,kv.exptang(excluderu));
end

qe = mean(qet)*100;
pe = mean(pet);
eb = mean(ebt);

varargout{1} = qe;
varargout{2} = pe;
varargout{3} = eb;


if flags.do_print
    fprintf('Quadrant errors (%%) \t\t %4.1f \n',qe)
    if nargout > 1
      fprintf('Local polar RMS error (deg) \t %4.1f \n',pe)
    end
    if nargout > 2
      fprintf('Local polar bias (deg) \t\t %4.1f \n',eb)
    end
end

end