This documentation page applies to an outdated major AMT version. We show it for archival purposes only.
Click here for the documentation menu and here to download the latest AMT (1.6.0).
function varargout = baumgartner2013( target,template,varargin )
%BAUMGARTNER2013 Model for sound localization in saggital planes
% Usage: pmv = baumgartner2013( target,template )
% [pmv,respang,tang] = baumgartner2013(target,template,u,lat,flow,fhigh,stim,fsstim,polsamp)
%
% Input parameters:
% target : binaural impulse response(s) referring to the directional
% transfer function(s) (DFTs) of the target sound(s).
% Option 1: given in SOFA format -> sagittal plane DTFs will
% be extracted internally.
% Option 2: binaural impulse responses of all available
% listener-specific DTFs of the sagittal plane formated
% according to the following matrix dimensions:
% time x direction x channel/ear
% template: listener-specific template.
% Options 1 & 2 equivalent to target*
%
% Output parameters:
% pmv : predicted probability mass vectors for response angles
% with respect to target positions.
% 1st dim: response angle.
% 2nd dim: target angle.
% respang : polar response angles (after regularization of angular
% sampling)
% tang : polar target angles in the given sagittal plane
%
% BAUMGARTNER2013(...) is a model for sound-source localization in
% sagittal planes (SPs). It bases on the comparison of internal sound
% representation with a template and results in a probabilistic
% prediction of polar angle response.
%
% BAUMGARTNER2013 accepts the following key/value pairs:
%
% 'fs',fs Define the sampling rate of the impulse responses.
% Default value is 48000 Hz.
%
% 'stim',stim Define the stimulus (source signal without directional
% features). As default an impulse is used.
%
% 'fsstim',fss Define the sampling rate of the stimulus.
% Default value is 48000 Hz.
%
% 'flow',flow Set the lowest frequency in the filterbank to
% flow. Default value is 700 Hz.
%
% 'fhigh',fhigh Set the highest frequency in the filterbank to
% fhigh. Default value is 18000 Hz.
%
% 'lat',lat Set the perceived lateral angle of the target sound to
% lat. Default value is 0 deg (midsagittal plane).
%
% 'u',u Set the listener-specific uncertainty (standard
% deviation of the Gaussian transformation from the
% distance metric of the comparison process to the
% similarity index) to u. Default value is 2 dB.
%
% 'space',s Set spacing of auditory filter bands to s numbers of
% equivalent rectangular bandwidths (ERBs).
% Default value is 1 ERB.
%
% 'bwsteep',bws Set the steepness factor bws of the sigmoid function
% applied for binaural weighting of monaural similarity
% indices. Default value is 13 deg.
%
% 'polsamp',ps Define the the polar angular sampling of the current
% SP. As default the sampling of ARI's HRTF format along
% the midsagittal plane is used, i.e.,
% ps = [-30:5:70,80,100,110:5:210].
%
% BAUMGARTNER2013 accepts the following flags:
%
% 'gammatone' Use the Gammatone filterbank for peripheral processing.
% This is the default.
%
% 'cqdft' Use a filterbank approximation based on DFT with
% constant relative bandwidth for peripheral processing.
% This was used by Langendijk and Bronkhorst (2002).
%
% 'ihc' Incorporate the transduction model of inner hair
% cells used by Dau et al. (1996). This is the default.
%
% 'noihc' Do not incorporate the IHC stage.
%
% 'regular' Apply spline interpolation in order to regularize the
% angular sampling of the polar response angle.
% This is the default.
%
% 'noregular' Disable regularization of angular sampling.
%
% Requirements:
% 1) SOFA API from http://sourceforge.net/projects/sofacoustics for Matlab (in e.g. thirdparty/SOFA)
%
% 2) Data in hrtf/baumgartner2013
%
% See also: plotbaumgartner2013, data_baumgartner2013,
% exp_baumgartner2013
%
% Demos: demo_baumgartner2013
%
% References:
% R. Baumgartner. Modeling sagittal-plane sound localization with the
% application to subband-encoded head related transfer functions.
% Master's thesis, University of Music and Performing Arts, Graz, June
% 2012.
%
% R. Baumgartner, P. Majdak, and B. Laback. Assessment of Sagittal-Plane
% Sound Localization Performance in Spatial-Audio Applications,
% chapter 4, page expected print date. Springer-Verlag GmbH, accepted for
% publication, 2013.
%
% T. Dau, D. Pueschel, and A. Kohlrausch. A quantitative model of the
% effective signal processing in the auditory system. I. Model structure.
% J. Acoust. Soc. Am., 99(6):3615-3622, 1996a.
%
% E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human
% sound localization. J. Acoust. Soc. Am., 112:1583-1596, 2002.
%
% R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient
% auditory filterbank based on the gammatone function. APU report, 2341,
% 1988.
%
%
% Url: http://amtoolbox.sourceforge.net/amt-0.9.5/doc/monaural/baumgartner2013.php
% Copyright (C) 2009-2014 Peter L. Søndergaard and Piotr Majdak.
% This file is part of AMToolbox version 0.9.5
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% AUTHOR: Robert Baumgartner, Acoustics Research Institute, Vienna, Austria
%% Check input options
definput.flags.fbank = {'gammatone','cqdft','drnl','zilany2007humanized'};
definput.flags.headphonefilter = {'','headphone'};
definput.flags.middleearfilter = {'','middleear'};
definput.flags.ihc = {'ihc','noihc'};
definput.flags.regularization = {'regular','noregular'};
% CP-Falgs:
definput.flags.cp={'std','xcorr'};
definput.keyvals.u=2; % listener-specific uncertainty in dB
definput.keyvals.lat=0; % deg
definput.keyvals.flow=700; % Hz
definput.keyvals.fhigh=18000; % Hz
definput.keyvals.stim=[];
definput.keyvals.fsstim=[];
definput.keyvals.polsamp=[-30:5:70 80 100 110:5:210]; % polar sampling (for regularization)
definput.keyvals.fs=48000; % Hz
definput.keyvals.space=1; % No. of ERBs (Cams)
definput.keyvals.do=0;
definput.keyvals.lvlstim = 40; % dBSPL
definput.keyvals.lvltem = 40; % dBSPL
definput.keyvals.bwsteep=13; % steepness in degrees of binaural weighting function
[flags,kv]=ltfatarghelper(...
{'u','lat','flow','fhigh','stim','fsstim','polsamp',...
'fs','space','do','lvlstim','lvltem','bwsteep'},definput,varargin);
if isstruct(target) % Targets given in SOFA format
kv.fs = target.Data.SamplingRate;
target = extractsp( kv.lat,target );
end
if isstruct(template) % Template given in SOFA format
[template,kv.polsamp] = extractsp( kv.lat,template );
end
%% Error handling
if size(template,2) ~= length(kv.polsamp)
fprintf('\n Error: Second dimension of template and length of polsamp need to be of the same size! \n')
return
end
%% Stimulus
if isempty(kv.stim)
kv.stim = [1;0];%[1;zeros(size(target,1),1)]; % impulse
kv.fsstim = kv.fs;
elseif isempty(kv.fsstim)
kv.fsstim = kv.fs;
end
if flags.do_headphone% || flags.do_drnl
hpfilt = headphonefilter(kv.fs);
kv.stim = convolve(kv.stim,hpfilt(:));
end
if flags.do_middleear% || flags.do_drnl
miearfilt = middleearfilter(kv.fs);
kv.stim = convolve(kv.stim,miearfilt(:));
end
%% DTF filtering
if ~isequal(kv.fs,kv.fsstim)
error('Sorry, sampling rate of stimulus and HRIRs must be equal!')
end
tmp = convolve(target,kv.stim);
target = reshape(tmp,[size(tmp,1),size(target,2),size(target,3)]);
%% Cochlear filter bank -> internal representations
if flags.do_cqdft
bpo = kv.space*6; % bands per octave (1 oct. approx. as 6 ERBs)
ireptem = cqdft(template,kv.fs,kv.flow,kv.fhigh,bpo);
ireptar = cqdft(target,kv.fs,kv.flow,kv.fhigh,bpo);
elseif flags.do_gammatone
% Determine filterbank
fc = audspacebw(kv.flow,kv.fhigh,kv.space,'erb');
Nfc = length(fc); % # of bands
[bgt,agt] = gammatone(fc,kv.fs,'classic');
bgt = real(bgt); % to ensure octave compatibility
agt = real(agt); % to ensure octave compatibility
% Filtering
ireptar = ufilterbankz(bgt,agt,target(:,:)); % channel (3rd) dimension resolved!
ireptem = ufilterbankz(bgt,agt,template(:,:)); % resolve 3rd dim
% IHC transduction
if flags.do_ihc
ireptar = ihcenvelope(ireptar,kv.fs,'ihc_dau');
ireptem = ihcenvelope(ireptem,kv.fs,'ihc_dau');
end
% Set back the channel dimension
ireptar = reshape(ireptar,[size(target,1),...
Nfc,size(target,2),size(target,3)]);
ireptem = reshape(ireptem,[size(template,1),Nfc,size(template,2),size(template,3)]);
% Averaging over time (RMS)
ireptar = 20*log10(squeeze(rms(ireptar))); % in dB!
ireptem = 20*log10(squeeze(rms(ireptem)));
elseif flags.do_drnl
% Set level
idnztar = target~=0; % to ignore pausings
idnztem = template~=0; % to ignore pausings
for ch = 1:size(template,3)
target(idnztar(:,:,ch)) = setdbspl(target(idnztar(:,:,ch)),kv.lvlstim);
template(idnztem(:,:,ch)) = setdbspl(template(idnztem(:,:,ch)),kv.lvltem);
end
% Filtering
[ireptar,fc] = drnl(target(:,:),kv.fs,'flow',kv.flow,'fhigh',kv.fhigh); % includes middle ear
ireptem = drnl(template(:,:),kv.fs,'flow',kv.flow,'fhigh',kv.fhigh);
% IHC transduction
if flags.do_ihc
ireptar = ihcenvelope(ireptar,kv.fs,'ihc_dau');
ireptem = ihcenvelope(ireptem,kv.fs,'ihc_dau');
end
% Set back the channel dimension
ireptar = reshape(ireptar,[size(ireptar,1),...
length(fc),size(target,2),size(target,3)]);
ireptem = reshape(ireptem,[size(ireptem,1),length(fc),size(template,2),size(template,3)]);
% Averaging over time (RMS)
ireptar = 20*log10(squeeze(rms(ireptar)));
ireptem = 20*log10(squeeze(rms(ireptem)));
elseif flags.do_zilany2007humanized
fsmod = 100e3; % Model sampling frequency in Hz
nf = 200; % # of AN fibers
fprintf('\n compute internal representation of target set: \n');
target = [target ; zeros(1e3,size(target,2),size(target,3))]; % concatenate zeros, otherwise comp_zilany2007humanized complaines about: "reptime should be equal to or longer than the stimulus duration."
ireptar = zeros(nf,size(target,2),size(target,3));
nt = size(target(:,:),2);
for ii = 1:nt
[ANout,vfreq] = zilany2007humanized(kv.lvlstim,target(:,ii),kv.fs,...
fsmod,'flow',kv.flow,'fhigh',kv.fhigh,'nfibers',nf);
ANout = ANout'-50; % subtract 50 due to spontaneous rate
ireptar(:,ii) = 20*log10(rms(ANout)); % integrate over time & in db
fprintf(' %2u of %2u done\n',ii,nt);
end
fprintf('\n Compute internal representation of template: \n');
template = [template ; zeros(1e3+1,size(template,2),size(template,3))]; % concatenate zeros, otherwise comp_zilany2007humanized complaines about: "reptime should be equal to or longer than the stimulus duration."
ireptem = zeros(nf,size(template,2),size(template,3));
nt = size(template(:,:),2);
for ii = 1:nt
ANout = zilany2007humanized(kv.lvltem,template(:,ii),kv.fs,...
fsmod,'flow',kv.flow,'fhigh',kv.fhigh,'nfibers',nf);
ANout = ANout'-50; % subtract 50 due to spontaneous rate
ireptem(:,ii) = 20*log10(rms(ANout)); % integrate over time & in dB
fprintf(' %2u of %2u done\n',ii,nt);
end
end
if size(ireptar,2) ~= size(target,2) % retreive polar dimension if squeezed out
ireptar = reshape(ireptar,[size(ireptar,1),size(target,2),size(target,3)]);
end
%% Comparison process -> monaural similarity indices (SIs)
si=zeros(size(template,2),size(target,2),size(template,3)); % initialisation
for it = 1:size(target,2)
si(:,it,:) = langendijk2002comp(ireptar(:,it,:),ireptem,'s',kv.u, ...
'argimport',flags,kv);
end
%% Binaural weighting -> binaural SIs
if size(si,3) == 2
binw = 1./(1+exp(-kv.lat/kv.bwsteep)); % weight of left ear signal with 0 <= binw <= 1
si = binw * si(:,:,1) + (1-binw) * si(:,:,2);
end
%% Interpolation (regularize polar angular sampling)
if flags.do_regular
respang0 = ceil(min(kv.polsamp)*0.2)*5; % ceil to 5°
respangs = respang0:5:max(kv.polsamp);
siint = zeros(length(respangs),size(si,2));
for tt = 1:size(si,2)
siint(:,tt) = interp1(kv.polsamp,si(:,tt),respangs,'spline');
end
si = siint;
si(si<0) = 0; % SIs must be positive (necessary due to spline interp)
else
respangs = kv.polsamp;
end
%% Normalization to PMV
pmv = si ./ repmat(sum(si),size(si,1),1);
%% Output
varargout{1} = pmv;
if nargout >= 2
varargout{2} = respangs;
if nargout >= 3
varargout{3} = kv.polsamp; % tang
end
end
end